
Plagiarism Detection for Multithreaded Software Based on
Thread-Aware Software Birthmarks

Zhenzhou Tian1, Qinghua Zheng1, Ting Liu1∗, Ming Fan1, Xiaodong Zhang1, Zijiang Yang2, 3

1 MOEKLINNS, Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
2 Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA

3 College of Computer and Technology, Xi’an University of Technology, 710048, China
{zztian,fanming.911025,oijiaoda}@stu.xjtu.edu.cn; {qhzheng,tingliu}@mail.xjtu.edu.cn; zijiang.yang@wmich.edu

ABSTRACT
The availability of inexpensive multicore hardware presents a
turning point in software development. In order to benefit from
the continued exponential throughput advances in new processors,
the software applications must be multithreaded programs. As
multithreaded programs become increasingly popular, plagiarism
of multithreaded programs starts to plague the software industry.
Although there has been tremendous progress on software
plagiarism detection technology, existing dynamic approaches
remain optimized for sequential programs and cannot be applied
to multithreaded programs without significant redesign. This
paper fills the gap by presenting two dynamic birthmark based
approaches. The first approach extracts key instructions while the
second approach extracts system calls. Both approaches consider
the effect of thread scheduling on computing software birthmarks.
We have implemented a prototype based on the Pin
instrumentation framework. Our empirical study shows that the
proposed approaches can effectively detect plagiarism of
multithread programs and exhibit strong resilience to various
semantic-preserving code obfuscations.

Categories and Subject Descriptors
K.5.1 [Legal Aspects of Computing]: Hardware/Software
Protection—Copyrights, Licensing; K.4.1 [Computer and
Society]: Public Policy Issues—Intellectual property rights

General Terms
Experimentation, Security, Legal Aspects

Keywords
Software Birthmark, Plagiarism Detection, Multithreaded
Program

1. INTRODUCTION
Software plagiarism is becoming a serious threat to the healthy
development of the software industry. The recent incidents
include the lawsuit against Verizon by Free Software Foundation

 *Corresponding Author

for distributing Busybox in its FIOS wireless routers [1], and the
crisis of Skype’s VOIP service for the violation of licensing terms
of Joltid. Unfortunately software plagiarism is easy to implement
but very difficult to detect. The unavailability of source code and
the existence of powerful automated semantic-preserving code
obfuscation tools [8] are a few reasons that make software
plagiarism a daunting task. Nevertheless, researchers welcomed
this challenge and developed effective methods. Software
watermarking is one of the earliest and most widely adopted
techniques. A watermark is a unique identifier embedded in a
program before its distribution. Being hard to remove but easy to
verify, watermarks can serve as a strong evidence for occurrences
of software plagiarism. However, watermarks in a program may
be eliminated by code obfuscations. It is also believed that a
sufficiently determined attacker will eventually be able to defeat
any watermark [7]. In order to address the problem, the concept of
software birthmark was proposed. A birthmark is a set of
characteristics extracted from a program that reflect the program’s
intrinsic properties and can be used to uniquely identify the
program. As illustrated in [17], with proper algorithms birthmarks
may identify software theft even after code obfuscations.

Despite the tremendous progress in software plagiarism detection
technology, a new trend in software development greatly threatens
its effectiveness. In recent years, from smartphones to servers,
multicore processors are now ubiquitous. The availability of
inexpensive multicore hardware presents a turning point in
software development. In order for software applications to
benefit from the continued exponential throughput advances in
new processors, the applications must be multithreaded programs.
The trend towards multithreaded programs is creating a gap
between the current software development practice and the
software plagiarism detection technology as the existing dynamic
approaches remain optimized for sequential programs and cannot
be applied to multithreaded without significant redesign.

Figure 1 shows a multithreaded program that is taken from a test
case used in the WET [25] project with slight modifications. We
apply two widely used software plagiarism detection approaches
based on software birthmarks: Dynamic Key Instruction Sequence
Birthmark (DKISB) [22] and System Call Short Sequence
Birthmark (SCSSB) [24]. We execute the program multiple times
under the same inputs. For each run we use DKISB or SCSSB to
extract a software birthmark and then compare the similarity
between the birthmarks across different runs. The similarity is
computed using four different metrics, including Cosine distance,
Jaccard index, Dice coefficient and Containment [22, 20, 6, 24],
that are widely used in birthmark based plagiarism detection
literature. According to its definition, a birthmark can uniquely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPC'14, June 2–3, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2879-1/14/06… $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICPC’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06...$15.00
http://dx.doi.org/10.1145/2597008.2597143

304

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include<stdlib.h>
#define N 8
pthread_t mThread[N];
void *run(void *data){
 int tid;
 tid =(int) data;
 printf("hello world from thread %d\n",tid);
 return NULL; }
int main(int argc, char *argv[]){
 int rc, i;
 int count;
 printf("input a number please: \n");
 scanf("%d",&i);
 for(i;i<N; i++){
 rc = pthread_create(&mThread[i], NULL, run, (void *) i);
 if (rc)
 printf("create thread failed. error code = %d\n", rc);}
 for(i=0;i<N; i++)
 pthread_join(mThread[i], NULL);
 printf("main thread finished\n");
 return 0; }

Figure 1. A simple multithreaded program

identify the program from which the birthmark is extracted.
Therefore, we expect highly similar birthmarks as we are
executing the same program under the same inputs. That is, we
expect current approaches to claim plagiarism in this experiment.

However, as shown in Table 1, the data contradict what we have
expected. For DKISB, the similarity scores are between 0.55 and
0.85. As for SCSSB, no score is greater than 0.55. In most
literature, a similarity score above 0.8 usually means definite
plagiarism and a score below 0.2 usually means definite
independent programs. Therefore, the widely used birthmark-
based software plagiarism detection techniques fail to declare
plagiarism on identical programs.

The example illustrates that the existing dynamic birthmark based
approaches are inadequate in identifying plagiarism of multi-
threaded programs because they neglect the effect of thread
scheduling. Program behavior is deterministically determined by
system inputs, including I/O, DMA, interrupts, in sequential
programs. Thus the executions of highly similar programs under
the same input should be very similar. This assumption no longer
holds for multithreaded programs because thread schedules are a
major source of non-determinism. For a program with n threads,
each executing k steps, there can be as many as (nk)!/(k!)n>(n!)k
different thread interleavings, a doubly exponential growth in
terms of n and k. This indicates that two executions under the
same inputs can be very different, which renders the existing
approaches ineffective.

TABLE 1. Similarity scores calculated with four metrics for
DKISBs and SCSSBs of multiple runs of the sample program

 DKISB SCSSB
Cosine Distance 0.838 0.452

Jaccard Index 0.551 0.369
Dice Coefficient 0.678 0.51

Containment 0.735 0.477

In this paper, we present thread-aware algorithms that effectively
detect plagiarism of multithreaded programs at the binary level.
Unlike many existing approaches [14, 19, 11] that require source
code, our approach uses binary because source code is usually
unavailable when birthmark techniques are used to obtain the
initial evidence of software plagiarism. We name our two
approaches TW-DKISB (Thread Aware Dynamic Key Instruction
Sequence Birthmark) and TW-SCSSB (Thread Aware System
Call Short Sequence Birthmark) that amend the existing
approaches of DKISB and SCSSB, respectively. We exploit two
models to abstract the thread information during birthmark
extraction. The similarity of birthmarks is computed using two
matching algorithms on the four metrics, i.e. Cosine Distance,
Jaccard Index, Dice Coefficient and Containment [22, 20, 6, 24].
We have implemented a prototype and conducted experiments on
134 versions of 24 multithreaded programs. The preliminary
results show that our approach is effective for multithreaded
software plagiarism detection. In addition, our approach exhibits
strong resilience to both weak obfuscations obtained by various
compiler optimizations, and strong obfuscations supported by
obfuscators such as SandMark [8] and Allatori [3].

The remainder of the paper is organized as follows. Section 2
introduces necessary concepts and describes our methods to
extracting and comparing birthmarks. A prototype overview is
also briefly described at the end of this section. Section 3 presents
the empirical study, followed by the related works in Section 4.
Finally we conclude the paper in Section 5.

2. THREAD AWARE BIRTHMARKS
BASED PLAGIARISM DETECTION

2.1 Software Birthmarks
A software birthmark is a set of characteristics extracted from a
program that reflects intrinsic properties of the program.
Depending on whether its extraction relies on program runs, a
software birthmark can be either considered static or dynamic.
Generated mainly by analyzing syntactic features, static
birthmarks tend to overlook operational behaviors of a program.
As a result, they are ineffective against sematic-preserving
obfuscations that can modify the syntactic structure of a program.
In contrast, dynamic birthmarks are extracted based on runtime
behaviors and thus are believed to be more accurate reflections of
program semantics and more robust against obfuscations. The
approaches proposed in this paper are based on dynamic software
birthmarks whose classical definition is given below.

Definition 1. (Dynamic Software Birthmark [21]) Let ,p q be two
programs or program components. Let I be an input to p and
q . Let (),f p I be a set of characteristics extracted from p when

executing p with input I . Then (),f p I is a dynamic birthmark of

p only if both of the following conditions are satisfied:

─ (),f p I is obtained only from p itself when executing

p with input I .
─ Program q is a copy of () (), ,p f p I f q I⇒ = .

As illustrated by the example in Figure 1, thread scheduling
makes the behavior of a multithreaded program non-deterministic
even under a fixed input. The classical definition of dynamic

305

software birthmark is no longer correct because () (), ,f p I f q I≠
even if q is a copy of p. In the following we give a definition
suitable for multithreaded programs.

Definition 2. (Thread-Aware Dynamic Software Birthmark) Let
,p q be two multithreaded programs or program components. Let

I be an input and s be a thread schedule to p and q . Let
(), ,f p I s be a set of characteristics extracted from p when

executing p with input I and thread schedule s. Then (), ,f p I s is
a dynamic birthmark of p only if both of the following conditions
are satisfied:

─ (), ,f p I s is obtained only from p itself when executing

p with input I and thread schedule s.
─ Program q is a copy of () (), , , ,p f p I s f q I s⇒ = .

2.2 Birthmarks for Individual Threads
Similar to Definition 1, Definition 2 provides an abstract
guideline without considering implementation. In practice it is
very difficult to predetermine a thread schedule and enforce the
scheduling. Therefore instead of enforcing thread schedules in our
algorithms, we try to shield their influence on executions. In order
to do so, we annotate each event, either a system call or a key
instruction, in an execution trace with thread identifier. We then
project the trace on thread identifiers to obtain sub-traces, each of
which belongs to a single thread. The birthmarks are extracted
from the sub-traces that can remain same even under different
thread schedules.

Formally, an execution trace () 1 2, , , , ntrace p I e e e=  is an

ordered set, in which ie (1 i n≤ ≤) is an instance of either a
system call or a key instruction, along with the thread identifier
that executes the instance. A key instruction is both value-
updating (whose execution generates new values rather than
migrate values, such as add and xor) and input-correlated (whose
execution propagates taints from program inputs). Detailed
description about key instructions and system calls, as well as the
reasons that they are suitable for software birthmark generation
are discussed in [22] and [24]. We use .e in and .e tid to denote
the instance and thread identifier at an event e , respectively.

Definition 3. (Thread Slice) Given an execution trace (),trace p I ,
we define its projection on thread t to be an ordered sub-set

() (), , | , .i i iSlice p I t e e trace p I e tid t= ∈ ∧ = of (),trace p I .
The projections of all the threads appearing in the trace form a
partition of (),trace p I , and each sub-set (), ,Slice p I t is called a
thread slice.

Definition 4. (Thread-Slice Birthmark) Let
() 1 2, , , , , nSlice p I t e e e=  be a thread slice of thread t when

executing program p with input I. Let
() { }{ }1 1| , 1,2, , 1, , , , , ,j j j j j kg g j n kSet p I t k e e e+ + −= ∈ − +=  be

a set of k-grams generated by applying the k-gram algorithm [18]
on the slice. We call the key-value pair set

() (){ () }1 2

' ' ' ' '
1 2, , | , , , , ,I

p j j j j jBirth k t g freq g g Set p I t k and j j g g= ∈ , ∀ ≠ ≠

 where ()'
jfreq g represents the frequency of '

jg occurred in

(), , ,Set p I t k , as the thread-slice birthmark of (), ,Slice p I t .

2.3 Generation of Program Birthmarks
With the availability of the birthmarks for individual threads, we
present two models, Slice Aggregation (SA) and Slice Set (SS), to
generate software birthmarks for a multithreaded program. The
SA model generates program birthmarks by aggregating all thread
birthmarks into a single set of key-value pairs, where the keys are
the unique k-grams obtained from all possible elements in each
thread-slice birthmark, and the values are frequencies of
correspondingly unique k-grams. If a key is owned by multiple
thread-slice birthmarks, its frequencies are added to be the new
value of the key. The SS model simply treats the key-value pair
consisting of thread identifier and the slice birthmark as each
element comprising the final program birthmark. Formally, the
definition of the two model are described as follows:

Definition 5. (Slice Aggregation Model) The slice aggregation
model is a map :f SB PB→ , where :

• (){ }, | 0 ,I
pSB Birth k t t m t= ≤ ≤ ∈ is the set of thread-slice

birthmarks and m is the number of threads in the recorded
trace.

• (),I
psb

PB Birth k t= ∪ is the software birthmark of program

p with input I , where t is the thread identifier of sb .

• For each element (),i ig freq g PB∈ , the frequency of

ig is calculated as () ()i j
sb

freq g freq g= ∑ where

, ,j j isb SB g sb and g g∈ ∈ = .

Definition 6. (Slice Set Model) The slice set model is a map
:g SB PB→ , where:

• (){ }, | 0 ,I
pSB Birth k t t m t= ≤ ≤ ∈ is the set of thread-slice

birthmarks and m is the number of threads in the recorded
trace.

• ()(){ }, , |I
pPB t Birth k t sb SB= ∈ is the software birthmark of

program p with input I , where t is the thread identifier of
each corresponding sb .

Based on the above discussions, the definition of TW-DKISB and
TW-SCSSB can be formally described as follows.

Definition 7. (TW-DKISB and TW-SCSSB) Let
() 1 2, , , , ntrace p I e e e=  be an execution trace and its

corresponding thread-slice birthmark set be
(){ }, | 0I

pSB Birth k t t m= ≤ ≤ . Then program birthmark PB can

be generated by applying either the SA model :f SB PB→ or
the SS model :g SB PB→ . We call the program birthmark PB as:

• TW-DKISB, if each element (),ie trace p I∈ is a key
instruction.

• TW-SCSSB, if each element (),ie trace p I∈ is a system call.

306

Example 1. Let’s take the trace of system calls as an example to
illustrate the process of generating TW-SCSSB. Suppose the
following trace is recorded when executing program p with I.

() () () () () ()1 1 1 1 2, , , , , , , , , , ,trace p I t open t read t write t read t read=

 () ()2 1, , ,t write t close

It can be observed that seven system calls were executed by two
threads 1t and 2t . According to the definition of thread slice, this
trace can be split into the following two slices:

() () () () () ()1 1 1 1 1 1, , , , , , , , ,slice t t open t read t write t read t close=

() () ()2 2 2, , ,slice t t read t write= .

The generated k-gram sets when 2k = are:

() () () () (){ }1, , , , , , , , ,Set p I t open read read write write read read close=

and () (){ }2, , ,Set p I t read write= ; the corresponding thread-slice
birthmarks are:

() () () (){12, , ,1 , , ,1 , , ,1 ,I
pBirth t open read read write write read=

() }, ,1read close and () (){ }22, , ,1I
pBirth t read write= .

Finally, the TW-SCSSB of program p with input I generated with
SA and SS model are respectively:

() () (){, ,2 , ,1 , , ,2 ,SATW SCSSB p I open read read write− =

() () }, ,1 , , ,1write read read close

() () (){ }1 1 2 2, ,2 , 2, , , 2,I I
SS p pTW SCSSB p I t Birth t t Birth t− = .

2.4 Similarity Calculation
In the literature of birthmark based software plagiarism detection,
the similarity between two programs is measured by the similarity
of their birthmarks. In general, birthmarks mainly exist in three
forms: sequences, sets and graphs. There are many methods for
calculating similarity of sets that are widely adopted in the field of
information retrieval, including Dice coefficient [6], Jaccard index
[20], and Cosine distance [16]. Computing the similarity of
graphs is relatively more complex. It is conducted by either graph
monomorphism or isomorphism algorithms [5, 14] or translating a
graph into a vector using algorithms such as random walk with
restart [4]. In our work, we explore different methods to calculate
the similarity of birthmarks generated with the SA and SS model.

2.4.1 Similarity Calculation Method for Birthmarks
Generated with SA model
According to the definition of the SA model, the generated TW-
DKISBs or TW-SCSSBs are in the form of key-value pair set,
therefore similarity computation methods such as Cosine distance,
Jaccard index, Dice coefficient and Containment can be used (It is
worth nothing that all the four metrics have been used to compute
birthmark similarities in previous studies. To prevent favoritism,
we provide formal definitions of the four modified metrics, and
implement all of them in our prototype to properly compare the
performance with others’ as shown in Section 3). However, since
these metrics do not consider frequency of the elements, two
different birthmarks may have the same result. In contrast,
frequencies of k-grams in a birthmark are taken into consideration
in our similarity calculation method. Specifically, each traditional
metric is multiplied by a factor θ that reflects frequency

similarity between two birthmarks. In the following we illustrate
how to compute the factor θ :

For software birthmarks { }1 1 2 2, , , , , ,n nA k v k v k v=  and

{ }' ' ' ' ' '
1 1 2 2, , , , , ,m mB k v k v k v=  , which may be either two TW-

DKISBs or two TW-SCSSBs, let () ()S keySet A keySet B= ∪ . We

construct a vector ()1 2, , , lA a a a=


 , in which each element

()
()

,

0,
i i

i
i

v if S keySet A
a

if S keySet A

 ∈= 
 ∉

, where 1 i l≤ ≤ and iv is the value of

key iS in A . Likewise ()1 2, , , lB b b b=


 can be constructed. Thus

2 2
,

, ,
, i i

i i

a A b B

min A B
where A a B b

max A B
θ

→ →

→ →

→ →
∈ ∈

 
 
 = = =
 
 
 

∑ ∑
 

.

The modified metrics are defined as following:

() ()

() ()

, ,

2
, ,

Jaccard

Ex Dice Containment

A BA B
Ex Cosine A B Ex A B

A BA B

A B A B
A B Ex A B

A B A

→ →

→ →

−

∩•
− = × θ; − = × θ;

∪

∩ ∩
= × θ; − = × θ;

+

And the similarity of two SA generated birthmarks can be
calculated with () (), ,cSim A B sim A B= , where { ,c Ex Cosine∈ −

}, ,Ex Jaccard Ex Dice Ex Containment− − − .

2.4.2 Similarity Calculation Method for Birthmarks
Generated with SS model
For software birthmarks generated by the SS model, we reduce the
problem of calculating their similarity into finding a maximum
weighted bipartite matching as illustrated in Figure 2. In particular,
each node marked by a thread identifier corresponds to a thread-
slice birthmark of the thread, and a weighted edge denotes the
similarity between two thread-slice birthmarks.

Formally, Let ()() ()() ()(){ }1 1 2 2= , , , , , ,m mA t Birth t t Birth t t Birth t

and ()() ()() ()(){ }' ' ' ' ' '
1 1 2 2= , , , , , ,n nB t Birth t t Birth t t Birth t be two

TW-DKISBs or TW-SCSSBs, where birthmark A contains
m thread-slice birthmarks and birthmark B contains n thread-

t1

t2

t3

.

.

.

.

.
tm

t1'

t2'

t3'
.
.
.
.
.

tn'

A B

sim(t1,t2')
sim(t2,t3')

sim(t3,tn ')

sim
(t m

,t 1')

Figure 2. Schematic diagram of bipartite matching modeling

for birthmarks generated by the SS model

307

slice birthmarks. A m n× similarity matrix is generated by
comparing every thread-slice birthmark in A to each thread-slice
birthmark in B using either of the four metrics listed in 2.4.1.

()

() () ()
() () ()

() () ()

' ' '
1 1 1 2 1

' ' '
2 1 2 2 2

' ' '
1 2

, , ,

, , ,
,

, , ,

c c c n

c c c n

c m c m c m n

sim t t sim t t sim t t

sim t t sim t t sim t t
SimMatrix A B

sim t t sim t t sim t t

 
 
 

=  
 
  
 





   



,

where { }, , ,c Ex Cosine Ex Jaccard Ex Dice Ex Containment∈ − − − − .
Then a valid match can be found by applying any maximum
weighted bipartite matching algorithms, formally denoted as

() () () (){ }1 1 2 2, , , , , , ,l lMaxMatch A B u v u v u v=  where (),l min m n= ,

()iu keyset A∈ , ()iv keyset B∈ , i ju u if i j≠ ≠ , i jv v if i j≠ ≠ ,

and (),
l

c i j
i

sim u v∑ has the maximum value among all the

matchings. Finally, the similarity of two SS model generated
software birthmarks are calculated with the following formula:

()
() () ()()() ()

() ()

'
' '

, ,

'

1 1

,
, i j

c i j i jt t MaxMatch A B

m n

i j
i j

sim t t count t count t
Sim A B

count t count t

∈

= =

× +
=

+

∑

∑ ∑

where () ()()i icount t keySet Birth t= , () ()()' '
j jcount t keySet Birth t= .

Example 2. We take TW-SCSSBs generated by the SS model as
an example to illustrate the process of similarity comparison.
Suppose the following trace is recorded when executing program

'p with I , where 'p is a copy of program p shown in Example 1.

() () () () () ()' ' ' ' ' '
1 2 1 2 1, , , , , , , , , , ,trace p I t open t read t read t write t write=

() ()' '
1 1, , ,t read t close .

For this trace, the TW-SCSSB generated using the SS model is:

() () (){ }' '
' ' ' ' '

1 1 2 2, ,2 , 2, , , 2,I I
SS p p

TW SCSSB p I t Birth t t Birth t− = where

() () () (){'
'
12, , ,1 , , ,1 , , ,1 ,I

p
Birth t open read read write write read=

() }, ,1read close and () (){ }'
22, , ,1I

pBirth t read write= .

Assume Ex-Jaccard is used as the metric to compute the similarity
between each slice birthmark of the two TW-SCSSBs, that is

()
() ()
() ()

'

'

'
1 2'

1 2 '
1 2

2, 2, 1,
82, 2,

I I
p p

Ex Jacard I I
p p

Birth t Birth t
sim t t

Birth t Birth t
θ−

∩
= × =

∪
. It leads to

a similarity matrix
1 0.125

0.125 1
 
 
 

 , base on which a maximum

matching can be found that () (){ }' '
1 1 2 2, , ,MaxMatch t t t t= . Finally,

similarity of the two birthmarks generated by the SS model,
(), ,2ssA TW SCSSB p I= − and ()' , ,2ssB TW SCSSB p I= − , is

computed as () 1 8 1 2, 1
10 10

Sim A B × ×
= + = .

2.5 Plagiarism Detection
The purpose of extracting birthmarks and calculating their
similarity is to eventually determine whether there exists
plagiarism. Considering that there are other random factors such

as DMA and interrupts besides thread scheduling, multiple
similarity scores are computed by executions under multiple
inputs. The average of the scores is taken as an evidence of
plagiarism.

Formally, Let AP and BP be two programs under test. Let the
birthmarks extracted from the programs using either the SS model
or the SA model under the inputs 1 2, , , nI I I be 1 2, , , nA A A and

1 2, , , nB B B respectively. The similarity between AP and BP can

be calculated by ()
()

1

,
,

n

j j
j

A B

Sim A B
Sim P P

n
==

∑
, whose value is

between 0 and 1. We then decide whether there exists plagiarism
according to the similarity scores and a threshold ε as follows:

()
1 ,

, ,
A B

A B A B

P P are classified as copies
Sim P P P P are classified as independent

otherwise inconclusive

ε
ε

≥ − 
= ≤ 
 

2.6 Tool Overview
Figure 3 depicts the overview of our prototype in which we have
implemented all the techniques discussed in this section. Given
the plaintiff (original program) and the defendant (suspicious
program) in binary code, and a set of inputs, our prototype
executes both programs with the same input one by one.
Meantime, the dynamic analysis module monitors the executions
and identifies the key instructions and the system calls in real time.
The monitoring produces two sequences. After sequences of both
plaintiff and defendant programs are available, they are fed into
the pre-processor to filter out noise and generate formatted
elements that constitute valid execution traces. Then the birthmark
generator performs thread projection, extracts thread-slice
birthmarks and generates TW-DKISBs and TW-SCSSBs with
either the SA or the SS model. Next the similarity scores are
computed between two TW-DKISBs or two TW-SCSSBs by the
similarity calculator. Finally, the plagiarism decider judges
whether the defendant is innocent or guilty according to the
average of similarity scores computed under different inputs and
the given threshold ε .

Dynamic
Analysis Module

Key Instruction
Sequence

Pre-Processor

Birthmark Similarity
Calculator

Plaintiff
Binary

Defendant
Binary

Input

k

Plagiarism Decider

S1

Detection Result

S2Sn

B
irt

hm
ar

k(
P)

B
irt

hm
ar

k(
D

)

• S1,S2,…,Sn are similarity values under different inputs

Birthmark Generator

ε

System Call
Sequence

Figure 3. Overview of thread-aware birthmarks based

plagiarism detection system

308

3. EXPERIMENTS AND EVALUATION
A high quality birthmark manifests in that the ratio of false
classifications (both inconclusive and incorrectly classified cases
are treated as false classifications) should be low enough for a
specific ε . To be specific, the similarity scores calculated between
a program and its derivative versions generated by applying
semantic-preserving code transformations should be high enough
so as to recognize copies, while scores between independently
developed programs should be low enough to distinguish them.
Generally in the literature, the following two properties of a
birthmark should be satisfied to make it valid. We restate them by
referring to the descriptions of Myles [18] and Seokwoo [6].

Property 1. (Resilience) Let p be a program and 'p be a
derivative version generated by applying semantic-preserving
code transformation τ to p . We say a birthmark pB is resilient to

τ if ()', 1Sim p p ε≥ − .

Property 2. (Credibility) Let p and q be independently
developed programs which may accomplish the same task. We say
a birthmark pB is credible if (),Sim p q ε≤ .

In the following sections, we firstly evaluate the TW-DKISBs and
the TW-SCSSBs generated by the SA and SS models against the
above two properties to check if they are valid software
birthmarks. The quality of our birthmarks are further compared
with other birthmarks using the AUC metric. It should be noted
that either TW-DKISBs or TW-SCSSBs are generated with k-
gram algorithm, which means the birthmarks are different when
choosing different values of k . However, as it has been
confirmed in most previous papers [22, 24, 20] where k-gram is
also used to generate birthmarks, setting the value of k to be 4 or
5 is a proper compromise between accuracy and efficiency. Hence,
all experiments conducted in the following adopt a k value of 5.

3.1 Validation of Resilience Property
3.1.1 Resiliency to Different Compilers and
Optimization Levels
A software plagiarist may try to evade detection by choosing a
different compiler or changing compiler optimization levels. This
can be considered as a relatively weak semantic preserving code
transformation technique. We choose a multithreaded
compression software pigz-2.3 as the experimental object to
evaluate the resilience property of our thread-aware birthmarks
against different compilers and optimization levels.

In the experiment, two different compilers LLVM3.2 and
GCC4.6.3 are used to compile the source code of pigz with five
optimization levels (-O0, -O1, -O2, -O3 and -Os) and the debug
option (-g) switched on or off, thus generating totally 20 different
executables. The statistical characteristics of the binaries are
collected using the disassembler IDA Pro. Table 2 shows some
statistical differences (maximum value, minimum value, average
value, and the standard deviation) among the executables. It can
be observed that these binaries vary significantly with respect to
the characteristics listed in the table headings (size of the binary,
number of functions, number of instructions, number of blocks
and number of calls).

TABLE 2. Statistical differences for all versions of pigz
generated with different compilers and optimization levels

 Size(kb) NoF. NoI. NoB. NoC.

Max. 295 415 22178 3734 2376

Min. 84 342 13860 2672 1031

Avg. 151.75 380.25 16269 3068.9 1206.8

Stdev. 60.53 23.4 2679 286.58 280.9

Each pair of the generated binaries of pigz are executed with the
same input. TW-DKISBs and TW-SCSSBs are generated and
their similarity is computed. As discussed in Section 2.5, results
based on a single input may not be credible, therefore we
conducted experiments with 18 different inputs (all the
experiments conducted below are conducted with multiple inputs
by default). To measure the resilience capability, the default
threshold value 0.25ε = is used.

Table 3(a) summarizes the results of the experiment, where the
heading “Avg.” indicates the average similarity score of all
comparison pairs, “Min.” indicates the minimum value computed
among all pairs, and “Acc.” indicates the accuracy of our
prototype. The accuracy is calculated by the ratio of pairs
classified as copies. It can be observed that TW-DKISBs
generated by either SA or SS model are very accurate regardless
of what types of similarity metrics are adopted. In particular, the
accuracy is nearly 1.0 when Ex-Cosine is selected to compute
similarity. TW-SCSSBs exhibit similar accurate results as TW-
DKISBs except for the Ex-Jaccard metric where an accuracy of
merely 0.47 is reached. This is due to the fact that most of the
similarity scores for this case are around 0.7 with a threshold
value 0.25ε = .

3.1.2 Resiliency to Special Obfuscation Tools
In this section, we evaluate the resilience of the thread-aware
birthmarks against advanced obfuscation techniques available in
sophisticated tools. Unfortunately the only binary obfuscator we
found is a commercial obfuscator called CloakWare Security
Suite. Publically available obfuscators or to say packers such as
Upx and WinUpack only implement code compression,
encryption and packing obfuscations. Executables processed with
these techniques will become rather different, bringing great
challenge to static birthmark based approaches, since an unpack
process is needed first to restore the original binary executables
before analysis. However, since executables processed with them
must be decompressed or decrypted during runtime in order to be
executed, making dynamic birthmarks have innate immunity to
them. Therefore in our empirical study we choose the Java byte
code obfuscation tool SandMark [8] that implements a series of
advanced semantic-preserving transformation techniques. We use
it with 15 application obfuscations, 7 class obfuscations and 17
method obfuscations to generate a group of obfuscated versions.
Several commercial and open source obfuscators including
Allatori, DashO, Jshrink, ProGuard and RetroGround (in the
following we call these tools Allatori-Series) are also selected to
generate semantic equivalent derivative versions since the latest
SandMark supports Java 1.4 only. In addition, because our system
works on binary executables, obfuscated versions are converted to
x86 executables with GCJ, the GNU ahead-of-time compiler for
java.

309

TABLE 3. Experimental results for resilience evaluation of TW-DKISBs and TW-SCSSBs

(a) Resilience evaluation against obfuscations caused by different compilers and optimization levels

TW-DKISB TW-SCSSB

SA Model SS Model SA Model SS Model

Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc.

Ex-Cosine 1 1 1 1 1 1 0.921 0.875 1 0.912 0.862 1

Ex-Jaccard 0.917 0.656 0.832 0.945 0.747 0.937 0.752 0.623 0.474 0.759 0.626 0.474

Ex-Dice 0.95 0.785 1 0.967 0.849 1 0.851 0.765 1 0.85 0.761 1

Ex-Containment 0.95 0.698 0.916 0.972 0.747 0.968 0.851 0.758 0.997 0.85 0.758 0.997

(b) Resilience evaluation against obfuscations provided by SandMark

TW-DKISB TW-SCSSB

SA Model SS Model SA Model SS Model

Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc.

Ex-Cosine 0.999 0.974 1 0.997 0.921 1 0.994 0.979 1 0.967 0.942 1

Ex-Jaccard 0.965 0.928 1 0.969 0.920 1 0.864 0.757 1 0.908 0.844 1

Ex-Dice 0.982 0.959 1 0.984 0.948 1 0.924 0.855 1 0.939 0.890 1

Ex-Containment 0.984 0.977 1 0.986 0.962 1 0.925 0.849 1 0.939 0.882 1

(c) Resilience evaluation against obfuscations provided by Alloatori-Series

TW-DKISB TW-SCSSB

SA Model SS Model SA Model SS Model

Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc.

Ex-Cosine 0.997 0.963 1 0.993 0.893 1 0.993 0.972 1 0.955 0.870 1

Ex-Jaccard 0.929 0.818 1 0.930 0.774 1 0.786 0.568 0.818 0.842 0.653 0.966

Ex-Dice 0.962 0.889 1 0.959 0.826 1 0.875 0.723 0.967 0.897 0.755 1

Ex-Containment 0.967 0.920 1 0.966 0.846 1 0.877 0.653 0.933 0.898 0.749 0.999

ConGzip and OffBzip2, two java programs that accomplish multi-
threaded gzip and bzip2 compression respectively using the java
zip library and At4J [2] library, are developed and selected as the
experimental objects. Each obfuscation technique implemented in
the SandMark and Allatori-Series is applied to the two programs
to generate a series of obfuscated versions. To ensure the semantic
equivalence after these transformations, all obfuscated versions
are tested with a set of inputs to check for correctness, and failed
ones are removed. Finally, 58 different versions are generated for
ConGzip, including 29 SandMark obfuscated versions and 29
Allatori-Series obfuscated ones. Only 35 different versions are
generated for OffBzip2, since SandMark failed to apply any of its
transformations due to its poor support for new java features used
in OffBzip2.

Next the thread-aware birthmarks are extracted and their similarity
scores are computed between each of the original program and its
obfuscated versions. Table 3(b) and 3(c) show the experimental
results of ConGzip with respect to SandMark and Allatori-Series
respectively. We can see that both TW-DKISBs and TW-SCSSBs
are accurate (with a lowest value of 0.818), and the average scores
vary from 0.8 to 1.0. Similar results are observed in the
experiments of OffBzip2. It indicates that our thread-aware
birthmarks can correctly identify almost all the derivatives

generated with various semantic-preserving code transformations.
These results are strong evidence that our birthmarks are resilient
and robust.

3.2 Validation of Credibility Property
In the following experiments, credibility of TW-DKISBs and TW-
SCSSBs is evaluated by checking the capability of distinguishing
independently developed programs. Three types of software that
are widely used in Linux are selected as the experimental objects,
including 6 multithreaded compression software (lbzip2, lrzip,
pbzip2, pigz, plzip and rar), 10 web browsers (arora, chromium,
dillo, Dooble, epiphany, firefox, konqueror, luakit, midori and
seaMonkey), and 5 audio players (cmus, mocp, mp3blaster,
mplayer and sox).
Although software of the same categories usually overlap greatly
in their functionalities, they can be rather different at the source
code level if implemented independently due to different
algorithms adopted, different design patterns applied, different
coding styles, etc.
In the experiments conducted, only TW-SCSSBs are evaluated for
the browsers, since the recorded key instructions are too large to
handle. But for the audio players and compression programs, both
TW-DKISBs and TW-SCSSBs are evaluated.

310

TABLE 4. Experimental results for credibility evaluation of TW-DKSIBs and TW-SCSSBs

(a) Credibility evaluation of TW-SCSSBs using 10 web browsers
 SA Model SS Model

Avg. Max. Acc. Avg+. Avg-. Avg. Max. Acc. Avg+. Avg-.

Ex-Cosine 0.127 0.57 0.8 0.323 0.081 0.125 0.57 0.8 0.311 0.08

Ex-Jaccard 0.07 0.36 0.933 0.188 0.037 0.057 0.365 0.956 0.147 0.03

Ex-Dice 0.112 0.496 0.822 0.278 0.07 0.089 0.485 0.889 0.223 0.051

Ex-Containment 0.118 0.588 0.822 0.281 0.078 0.096 0.588 0.878 0.226 0.06

(b) Credibility evaluation using software of different categories

TW-DKISB TW-SCSSB

SA Model SS Model SA Model SS Model

Avg. Max. Acc. Avg. Max. Acc. Avg. Max. Acc. Avg. Max. Acc.

Ex-Cosine 0.083 0.631 0.873 0.071 0.61 0.891 0.108 0.611 0.818 0.1 0.616 0.836

Ex-Jaccard 0.025 0.181 1 0.018 0.165 1 0.043 0.269 0.964 0.042 0.305 0.982

Ex-Dice 0.042 0.283 0.945 0.03 0.26 0.982 0.072 0.418 0.891 0.066 0.435 0.909

Ex-Containment 0.065 0.336 0.927 0.051 0.338 0.982 0.077 0.481 0.909 0.072 0.485 0.936

The experimental results are very accurate for both TW-DKISBs
and TW-SCSSBs. Due to space limitation we list results for the
web browsers only.

As summarized in Table 4(a) for the web browsers, the accuracy
values (defined by the ratio of pairs classified as independent) for
TW-SCSSBs generated by either the SA or SS model are all very
high regardless of what types of similarity metrics are adopted.
The corresponding average scores are all around 0.1. Also, the
maximum values computed under each scheme are counted.
Besides, we note that five of the browsers (arora, Dooble,
epiphany, luakit and midori) are Webkit-based while the others
utilize different layout engines. Therefore we also count the
average similarity scores just between these five Webkit-based
browsers indicated by “Avg+”, and the average similarity scores
between the Webkit-based and non-Webkit-based browsers
indicated by “Avg-”. As expected, the values in the “Avg+”
columns are four to five times bigger than values in the “Avg-”
columns. It indicates that our birthmarks have the potential to
recognize shared modules used in different programs, implying
the possibility of applying them to library or partial plagiarism
detection.
In this section, similarity between the 6 compression programs
and the 5 audio players are computed with respect to each scheme,
to evaluate the credibility of TW-DKISBs and TW-SCSSBs
against independently implemented software in different
categories. Similarly, the average scores, the maximum scores and
the accuracies are computed and summarized in Table 4(b). The
results are good enough to prove the credibility of our birthmarks.

3.3 Comparison with Traditional Birthmarks
3.3.1 Performance Evaluation Metric
To compare the performance of our birthmarks with others, we
utilize the AUC metric adopted in [9], namely the area under the
F-Measure curve. However, they model the problem of plagiarism
detection as a binary decision problem (guilty and innocent),
while the detection result given by our system may be guilty,

innocent and inconclusive according to the formula in Section 2.5.
So based on the implication of precision and recall, the precision
and recall for our plagiarism detection method are customized to
the following definitions:

EP JP EI JI
Precision

JP JI
∩ + ∩

=
+

;
EP JP EI JI

Recall
EP EI

∩ + ∩
=

+

where EP represents the set of comparison pairs that have
plagiarism, and JP represents the set of comparison pairs that are
judged plagiarism by our tool. Similarly, EI represents the set of
comparison pairs that are independent, and JI represents the set
of comparison pairs that are judged as independent by our tool.
The weighted harmonic mean of precision and recall, namely the
F-Measure metric, is defined as:

2 Precision RecallF Measure
Precision Recall
× ×

− =
+

.

As mentioned in Section 2.5, the detection result of our approach
relies on the adopted value of threshold ε . By increasing the
value of ε from 0 to 0.5, we can correspondingly draw an F-
Measure curve. And the area under the curve (AUC) is used as the
metric to evaluate the performance of our birthmarks against
others over the entire space of threshold ε .

3.3.2 Comparison Result
In this group of experiments, performance of TW-DKISBs and
TW-SCSSBs are compared with traditional DKISBs and SCSSBs.
All the comparison pairs that appear in Section 3.1 and 3.2 are
taken as the experimental objects, which means all comparisons
conducted in Section 3.1 to validate the resilience property with
various semantic-preserving transformation generated copies
constitute the set EP , and all comparisons conducted in Section
3.2 to validate the credibility property with various independently
developed programs constitute the set EI . Similarly, JP is
consisted of comparison pairs detected as copies among all pairs,
and JI consists of pairs detected as independent.

311

TABLE 5. AUC analysis results
 SATW DKISB− SSTW DKISB− DKISB SATW SCSSB− SSTW SCSSB− SCSSB

Ex Cosine− 0.93 0.934 0.93 0.935 0.926 0.933
Ex Jaccard− 0.887 0.908 0.874 0.682 0.744 0.537
Ex Dice− 0.907 0.923 0.9 0.804 0.828 0.721
Ex Containment− 0.909 0.923 0.9 0.807 0.829 0.721

Due to space limitations, we only give the F-Measure curves for
system call sequence based birthmarks, as depicted in Figure 4.
There are four subfigures, each of which corresponds to one of the
four metrics selected to compute similarity. In each subfigure, the
lines in green and red represent the F-Measure curves of TW-
SCSSBs generated with the SA model and the SS model
respectively. The blue lines represent the F-Measure curve plotted
for SCSSB. It can be observed that the two TW-SCSSBs do not
exhibit significant difference in their F-Measure values, but both
are greater than that of SCSSBs’ across the whole x-axis in each
subfigure except for the Ex-Cosine metric subfigure in which the
two TW-SCSSBs perform as good as traditional SCSSB.

For a more specific and scientific comparison, we compute the
AUC for each birthmark with respect to each similarity metric,
and summarize the results in Table 5. As it shows, the AUCs of
thread-aware birthmarks are all greater than that of other
birthmarks’ no matter what similarity metric is adopted. This
indicates that TW-DKISBs and TW-SCSSBs perform better than
DKISB and SCSSB. Also, it can be observed that the performance
improvement between TW-DKISBs and DKISB is minimal, while
the improvement between TW-SCSSBs and SCSSB is significant
(with a maximum performance gain of 38.5% for TW-SCSSB
generated by the SS model using the Ex-Jaccard Metric). This
indicates that system call sequence based birthmarks are more
easily affected by thread scheduling. In addition, the Ex-Cosine
metric is less sensitive to thread scheduling compared with the
other three metrics.

4. RELATED WORK
Broadly speaking, the research areas related to our work include
software watermarking [7], plagiarism detection, code clone
detection, and malware identification. In this section we focus on
the discussion of birthmark based software plagiarism detection
techniques. We group relevant works into two categories: static
and dynamic. Works targeting source code are neglected since
there have already been many mature detection systems and tools
[14, 19, 11].

Static binary code based birthmarks: Myles and Collberg [18]
proposed a k-gram based static birthmark for Java, where sets of
Java bytecode sequences of length k are taken as the birthmarks
and similarity between two birthmarks are calculated through set
operations. The frequencies of elements in the sets are ignored.
They evaluated their birthmark using several small java programs.
Although the birthmark shows good robustness, it is vulnerable to
code transformation attacks. Lim proposed to use control flow
information that reflects runtime behaviors to supplement static
approaches [13]. More recently Lim proposed to analyze stack
flows obtained by simulating the operand stack movements to
detect copies [12].

Dynamic software birthmarks: Myles and Collberg [17]
suggested to use whole program path generated by compressing a
whole dynamic control flow trace into WPP form to uniquely

identify program. Schuler [20] treated Java standard API call
sequences at object level as dynamic birthmarks for java programs.
Such approach exhibited better performance than WPP birthmarks.
Tamada [21] introduced two API based birthmarks for windows
executables extracted at runtime: Sequence of API Function Calls
(EXESEQ) and Frequency of API Function Calls (EXEFREQ).
However these methods are all language dependent. To address
the problem Wang et al. [24] proposed two dynamic birthmarks
based on system calls: System Call Short Sequence birthmark
(SCSSB) and Input Dependent System Call Subsequence
birthmark (IDSCSB). By integrating data flow and control flow
dependency analysis, [23] proposed a system call dependency
graph based birthmark (SCDG). Recently [10, 26] suggested to
characterize software with core values and applied it to software
and algorithm plagiarism detection. A heap graph birthmark based
on heap memory analysis is proposed by Patrick et al. [5], and
graph monomorphism algorithm is used to compute the similarity.
In their experiments, the birthmark was applied to the detection of
module plagiarism in JavaScript, and the results were highly
accurate.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold (ε)

F
-M

ea
su

re

TW-SCSSBSA

TW-SCSSBSS
SCSSB

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold (ε)

F
-M

ea
su

re

TW-SCSSBSA

TW-SCSSBSS
SCSSB

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold (ε)

F
-M

ea
su

re

TW-SCSSBSA

TW-SCSSBSS
SCSSB

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold (ε)

F
-M

ea
su

re

TW-SCSSBSA

TW-SCSSBSS
SCSSB

Ex-Containment Metric

Ex-Dice Metric Ex-Jaccard Metric

Ex-Cosine Metric

Figure 4. F-Measure curves for TW-SCSSBSA, TW-SCSSBSS,

and SCSSB

5. CONCLUSION
As multithreaded software become increasingly more popular,
current dynamic software plagiarism detection technology geared
toward sequential programs are no longer sufficient. This paper is
a first step to fill the gap by proposing thread aware software
plagiarism detection techniques. The primary contributions of this
paper are as following:

• Two thread-aware dynamic birthmarks TW-DKISB and
TW-SCSSB are proposed for plagiarism detection of

312

multithreaded programs. Our algorithms are able to extract
the birthmarks at binary level without the need for source
code or java bytecode. In particular, TW-DKISB can be
extracted independent of operating systems.

• We have developed a prototype and evaluated the
effectiveness of our algorithms. The extensive experiments
show that our proposed approaches are not only accurate in
detecting plagiarism of multithreaded programs but also
robust against semantic-preserving obfuscations.

• A suite of benchmarks is complied. We believe there will be
more research on plagiarism detection for multithreaded
programs. The existence of such benchmarks will be
beneficial for researchers to conduct experiments and
present their findings. The benchmarks are available at:

http://labs.xjtudlc.com/labs/benchmark.html
To the best of our knowledge, our work is the first that addresses
the challenges of applying dynamic birthmark based approaches
for plagiarism detection of multithreaded programs. We envision a
future when most applications are multithreaded programs and we
plan to continue the research to improve accuracy and efficiency
of the proposed algorithms.

6. ACKNOWLEDGMENTS
The research was supported in part by National Science

Foundation of China under Grant (91118005, 91218301,
61221063, 61203174), National High Technology Research and
Development Program 863 of China under Grant
(2012AA011003), Cheung Kong Scholar’s Program, Key Projects
in the National Science and Technology Pillar Program of China
(2012BAH16F02), and the Fundamental Research Funds for the
Central Universities.

7. REFERENCES
[1] http://sourceauditor.com/blog/tag/lawsuits-on-open-source/.
[2] At4J library. http://www.at4j.org/download.php.
[3] Allatori obfuscator. http://www.allatori.com/.
[4] Chae D K, Ha J, Kim S W, et al. Software plagiarism

detection: a graph-based approach[C].In: CIKM 2013.ACM
2013, 1577-1580.

[5] Chan P, Lucas C K. Heap Graph Based Software Theft
Detection[J]. IEEE Transactions on Information Forensics
and Security, 2013.

[6] Choi S, Park H, et al. A static API birthmark for Windows
binary executables[J]. Journal of Systems and Software. 2009,
82(5): 862-873.

[7] Collberg C, Carter E, Debray S, et al. Dynamic path-based
software watermarking[C]. In: PLDI '04.New York, NY,
USA: ACM, 2004.

[8] Collberg C, Myles G R, Huntwork A. Sandmark-a tool for
software protection research[J]. Security & Privacy, IEEE.
2003, 1(4): 40-49.

[9] Fukuda K, Tamada H. A Dynamic Birthmark from Analyzing
Operand Stack Runtime Behavior to Detect Copied
Software[C]. In: SNPD '13. IEEE, 2013: 505-510.

[10] Jhi Y, Wang X, Jia X, et al. Value-based program
characterization and its application to software plagiarism
detection[C]. In: ICSE '11.New York, NY, USA: ACM,
2011. 756-765.

[11] Ji J, Woo G, Cho H. A source code linearization technique
for detecting plagiarized programs[J]. SIGCSE Bull.2007.

[12] Lim H I, Taisook H A N. Analyzing Stack Flows to Compare
Java Programs[J]. IEICE TRANSACTIONS on Information
and Systems, 2012, 95(2): 565-576.

[13] Lim H, Park H, Choi S, et al. A method for detecting the
theft of Java programs through analysis of the control flow
information[J]. Information and Software Technology, 2009,
51(9): 1338-1350.

[14] Liu C, Chen C, et al. GPLAG: detection of software
plagiarism by program dependence graph analysis[C]. In:
KDD, 2006. 872-881.

[15] Luk C, Cohn R, Muth R, et al. Pin: building customized
program analysis tools with dynamic instrumentation[C]. In:
PLDI '05.New York, NY, USA: 2005.

[16] Mcmillan C, Grechanik M, Poshyvanyk D. Detecting similar
software applications[C]. In: ICSE 2012.Piscataway, NJ,
USA: IEEE Press, 2012. 364-374.

[17] G. Myles and C. Collberg. Detecting software theft via whole
program path birthmarks, in Proc. Inf. Security 7th Int. Conf.
(ISC 2004),Palo Alto, CA, Sep. 27–29, 2004, pp. 404–415.

[18] Myles G, Collberg C. K-gram based software birthmarks[C].
In: SAC '05. New York, NY, USA: ACM, 2005. 314-318.

[19] Rechelt L, Malpohl G, Philippsen M. Finding plagiarisms
among a set of programs with JPlag[J]. Journal of universal
computer science, 2002, 8(11): 1016-1038.

[20] Schuler D, Dallmeier V, Lindig C. A dynamic birthmark for
java[C]. In: ASE '07.New York, NY, USA: ACM, 2007. 27.

[21] Tamada H, Okamoto K, et al. Dynamic software birthmarks
to detect the theft of windows applications[C]. In
International Symposium on Future Software Technology.
Xian, China, 2004.

[22] Tian Z, Zheng Q, Liu T, et al. DKISB: Dynamic Key
Instruction Sequence Birthmark for Software Plagiarism
Detection[C]. In: HPCC'13.Zhang Jia Jie, Hu Nan: IEEE,
2013.

[23] Wang X, Jhi Y, Zhu S, et al. Behavior based software theft
detection[C]. In: CCS '09.New York, NY, USA: ACM, 2009.
280-290.

[24] Wang X, Jhi Y, Zhu S, et al. Detecting Software Theft via
System Call Based Birthmarks[C].In:ACSAC'09.Washington,
DC, USA: IEEE Computer Society, 2009. 149-158.

[25] Zhang X, Gupta R. Whole execution traces[C]. Proceedings
of the 37th annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2004: 105-116.

[26] Zhang F, Jhi Y, Wu D, et al. A first step towards algorithm
plagiarism detection[C]. In: ISSTA 2012.New York, NY,
USA: ACM, 2012. 111-12.

313

