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ABSTRACT 
The availability of inexpensive multicore hardware presents a 
turning point in software development. In order to benefit from 
the continued exponential throughput advances in new processors, 
the software applications must be multithreaded programs. As 
multithreaded programs become increasingly popular, plagiarism 
of multithreaded programs starts to plague the software industry. 
Although there has been tremendous progress on software 
plagiarism detection technology, existing dynamic approaches 
remain optimized for sequential programs and cannot be applied 
to multithreaded programs without significant redesign.  This 
paper fills the gap by presenting two dynamic birthmark based 
approaches. The first approach extracts key instructions while the 
second approach extracts system calls. Both approaches consider 
the effect of thread scheduling on computing software birthmarks.  
We have implemented a prototype based on the Pin 
instrumentation framework. Our empirical study shows that the 
proposed approaches can effectively detect plagiarism of 
multithread programs and exhibit strong resilience to various 
semantic-preserving code obfuscations. 

Categories and Subject Descriptors 
K.5.1 [Legal Aspects of Computing]: Hardware/Software 
Protection—Copyrights, Licensing; K.4.1 [Computer and 
Society]: Public Policy Issues—Intellectual property rights 

General Terms 
Experimentation, Security, Legal Aspects 

Keywords 
Software Birthmark, Plagiarism Detection, Multithreaded 
Program 

1. INTRODUCTION 
Software  plagiarism is becoming a serious threat to the healthy 
development of the software industry. The recent incidents 
include the lawsuit against Verizon by Free Software Foundation 
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for distributing Busybox in its FIOS wireless routers [1], and the 
crisis of Skype’s VOIP service for the violation of licensing terms 
of Joltid. Unfortunately software plagiarism is easy to implement 
but very difficult to detect. The unavailability of source code and 
the existence of powerful automated semantic-preserving code 
obfuscation tools [8] are a few reasons that make software 
plagiarism a daunting task. Nevertheless, researchers welcomed 
this challenge and developed effective methods. Software 
watermarking is one of the earliest and most widely adopted 
techniques. A watermark is a unique identifier embedded in a 
program before its distribution. Being hard to remove but easy to 
verify, watermarks can serve as a strong evidence for occurrences 
of software plagiarism. However, watermarks in a program may 
be eliminated by code obfuscations. It is also believed that a 
sufficiently determined attacker will eventually be able to defeat 
any watermark [7]. In order to address the problem, the concept of 
software birthmark was proposed. A birthmark is a set of 
characteristics extracted from a program that reflect the program’s 
intrinsic properties and can be used to uniquely identify the 
program. As illustrated in [17], with proper algorithms birthmarks 
may identify software theft even after code obfuscations.  

Despite the tremendous progress in software plagiarism detection 
technology, a new trend in software development greatly threatens 
its effectiveness. In recent years, from smartphones to servers, 
multicore processors are now ubiquitous. The availability of 
inexpensive multicore hardware presents a turning point in 
software development. In order for software applications to 
benefit from the continued exponential throughput advances in 
new processors, the applications must be multithreaded programs. 
The trend towards multithreaded programs is creating a gap 
between the current software development practice and the 
software plagiarism detection technology as the existing dynamic 
approaches remain optimized for sequential programs and cannot 
be applied to multithreaded without significant redesign.   

Figure 1 shows a multithreaded program that is taken from a test 
case used in the WET [25] project with slight modifications. We 
apply two widely used software plagiarism detection approaches 
based on software birthmarks: Dynamic Key Instruction Sequence 
Birthmark (DKISB) [22] and System Call Short Sequence 
Birthmark (SCSSB) [24]. We execute the program multiple times 
under the same inputs. For each run we use DKISB or SCSSB to 
extract a software birthmark and then compare the similarity 
between the birthmarks across different runs. The similarity is 
computed using four different metrics, including Cosine distance, 
Jaccard index, Dice coefficient and Containment [22, 20, 6, 24], 
that are widely used in birthmark based plagiarism detection 
literature. According to its definition, a birthmark can uniquely 
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#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include<stdlib.h>
#define N 8 
pthread_t mThread[N];
void *run(void *data){      
     int tid;
     tid =(int) data;  
     printf("hello world from thread %d\n",tid);
      return NULL; }
int main(int argc, char *argv[]){ 
    int rc, i;
    int count;
    printf("input a number please: \n");
    scanf("%d",&i);
    for(i;i<N; i++){
       rc = pthread_create(&mThread[i], NULL, run, (void *) i);
       if (rc) 
          printf("create thread failed. error code = %d\n", rc);}   
       for(i=0;i<N; i++)
          pthread_join(mThread[i], NULL);     
    printf("main thread finished\n");
    return 0; }  

Figure 1. A simple multithreaded program 

identify the program from which the birthmark is extracted. 
Therefore, we expect highly similar birthmarks as we are 
executing the same program under the same inputs. That is, we 
expect current approaches to claim plagiarism in this experiment. 

However, as shown in Table 1, the data contradict what we have 
expected. For DKISB, the similarity scores are between 0.55 and 
0.85. As for SCSSB, no score is greater than 0.55. In most 
literature, a similarity score above 0.8 usually means definite 
plagiarism and a score below 0.2 usually means definite 
independent programs. Therefore, the widely used birthmark-
based software plagiarism detection techniques fail to declare 
plagiarism on identical programs.  

The example illustrates that the existing dynamic birthmark based 
approaches are inadequate in identifying plagiarism of multi-
threaded programs because they neglect the effect of thread 
scheduling. Program behavior is deterministically determined by 
system inputs, including I/O, DMA, interrupts, in sequential 
programs. Thus the executions of highly similar programs under 
the same input should be very similar. This assumption no longer 
holds for multithreaded programs because thread schedules are a 
major source of non-determinism. For a program with n threads, 
each executing k steps, there can be as many as (nk)!/(k!)n>(n!)k 
different thread interleavings, a doubly exponential growth in 
terms of n and k. This indicates that two executions under the 
same inputs can be very different, which renders the existing 
approaches ineffective. 

TABLE 1. Similarity scores calculated with four metrics for 
DKISBs and SCSSBs of multiple runs of the sample program 

 DKISB SCSSB 
Cosine Distance 0.838 0.452 

Jaccard Index 0.551 0.369 
Dice Coefficient 0.678 0.51 

Containment 0.735 0.477 

In this paper, we present thread-aware algorithms that effectively 
detect plagiarism of multithreaded programs at the binary level. 
Unlike many existing approaches [14, 19, 11] that require source 
code, our approach uses binary because source code is usually 
unavailable when birthmark techniques are used to obtain the 
initial evidence of software plagiarism. We name our two 
approaches TW-DKISB (Thread Aware Dynamic Key Instruction 
Sequence Birthmark) and TW-SCSSB (Thread Aware System 
Call Short Sequence Birthmark) that amend the existing 
approaches of DKISB and SCSSB, respectively. We exploit two 
models to abstract the thread information during birthmark 
extraction. The similarity of birthmarks is computed using two 
matching algorithms on the four metrics, i.e. Cosine Distance, 
Jaccard Index, Dice Coefficient and Containment [22, 20, 6, 24].  
We have implemented a prototype and conducted experiments on 
134 versions of 24 multithreaded programs. The preliminary 
results show that our approach is effective for multithreaded 
software plagiarism detection. In addition, our approach exhibits 
strong resilience to both weak obfuscations obtained by various 
compiler optimizations, and strong obfuscations supported by 
obfuscators such as SandMark [8] and Allatori [3].   

The remainder of the paper is organized as follows. Section 2 
introduces necessary concepts and describes our methods to 
extracting and comparing birthmarks. A prototype overview is 
also briefly described at the end of this section. Section 3 presents 
the empirical study, followed by the related works in Section 4. 
Finally we conclude the paper in Section 5. 

2. THREAD AWARE BIRTHMARKS 
BASED PLAGIARISM DETECTION 

2.1 Software Birthmarks 
A software birthmark is a set of characteristics extracted from a 
program that reflects intrinsic properties of the program. 
Depending on whether its extraction relies on program runs, a 
software birthmark can be either considered static or dynamic. 
Generated mainly by analyzing syntactic features, static 
birthmarks tend to overlook operational behaviors of a program. 
As a result, they are ineffective against sematic-preserving 
obfuscations that can modify the syntactic structure of a program. 
In contrast, dynamic birthmarks are extracted based on runtime 
behaviors and thus are believed to be more accurate reflections of 
program semantics and more robust against obfuscations. The 
approaches proposed in this paper are based on dynamic software 
birthmarks whose classical definition is given below. 

Definition 1. (Dynamic Software Birthmark [21]) Let ,p q be two 
programs or program components. Let I  be an input to p  and 
q . Let ( ),f p I  be a set of characteristics extracted from p when 

executing p with input I . Then ( ),f p I is a dynamic birthmark of 

p  only if both of the following conditions are satisfied: 

─ ( ),f p I  is obtained only from p itself when executing 

p with input I . 
─ Program q is a copy of ( ) ( ), ,p f p I f q I⇒ = . 

As illustrated by the example in Figure 1, thread scheduling 
makes the behavior of a multithreaded program non-deterministic 
even under a fixed input. The classical definition of dynamic 
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software birthmark is no longer correct because ( ) ( ), ,f p I f q I≠  
even if q is a copy of p. In the following we give a definition 
suitable for multithreaded programs.  

Definition 2. (Thread-Aware Dynamic Software Birthmark) Let 
,p q be two multithreaded programs or program components. Let 

I  be an input and s  be a thread schedule to p  and q . Let 
( ), ,f p I s be a set of characteristics extracted from p when 

executing p with input I and thread schedule s. Then ( ), ,f p I s is 
a dynamic birthmark of p only if both of the following conditions 
are satisfied: 

─ ( ), ,f p I s  is obtained only from p itself when executing 

p with input I and thread schedule s. 
─ Program q is a copy of ( ) ( ), , , ,p f p I s f q I s⇒ = . 

2.2 Birthmarks for Individual Threads 
Similar to Definition 1, Definition 2 provides an abstract 
guideline without considering implementation. In practice it is 
very difficult to predetermine a thread schedule and enforce the 
scheduling. Therefore instead of enforcing thread schedules in our 
algorithms, we try to shield their influence on executions. In order 
to do so, we annotate each event, either a system call or a key 
instruction, in an execution trace with thread identifier. We then 
project the trace on thread identifiers to obtain sub-traces, each of 
which belongs to a single thread. The birthmarks are extracted 
from the sub-traces that can remain same even under different 
thread schedules. 

Formally, an execution trace ( ) 1 2, , , , ntrace p I e e e=  is an 

ordered set, in which ie ( 1 i n≤ ≤ ) is an instance of either a 
system call or a key instruction, along with the thread identifier 
that executes the instance. A key instruction is both value-
updating (whose execution generates new values rather than 
migrate values, such as add and xor) and input-correlated (whose 
execution propagates taints from program inputs). Detailed 
description about key instructions and system calls, as well as the 
reasons that they are suitable for software birthmark generation 
are discussed in [22] and [24]. We use .e in  and .e tid  to denote 
the instance and thread identifier at an event e , respectively. 

Definition 3. (Thread Slice) Given an execution trace ( ),trace p I , 
we define its projection on thread t to be an ordered sub-set 

( ) ( ), , | , .i i iSlice p I t e e trace p I e tid t= ∈ ∧ =  of ( ),trace p I . 
The projections of all the threads appearing in the trace form a 
partition of ( ),trace p I , and each sub-set ( ), ,Slice p I t is called a 
thread slice. 

Definition 4. (Thread-Slice Birthmark) Let 
( ) 1 2, , , , , nSlice p I t e e e=   be a thread slice of thread t when 

executing program p with input I. Let 
( ) { }{ }1 1| , 1,2, , 1, , , , , ,j j j j j kg g j n kSet p I t k e e e+ + −= ∈ − +=  be 

a set of k-grams generated by applying the k-gram algorithm [18] 
on the slice. We call the key-value pair set 

( ) ( ){ ( ) }1 2

' ' ' ' '
1 2, , | , , , , ,I

p j j j j jBirth k t g freq g g Set p I t k and j j g g= ∈  ,  ∀ ≠ ≠

 where ( )'
jfreq g represents the frequency of '

jg occurred in 

( ), , ,Set p I t k , as the thread-slice birthmark of ( ), ,Slice p I t . 

2.3 Generation of Program Birthmarks 
With the availability of the birthmarks for individual threads, we 
present two models, Slice Aggregation (SA) and Slice Set (SS), to 
generate software birthmarks for a multithreaded program. The 
SA model generates program birthmarks by aggregating all thread 
birthmarks into a single set of key-value pairs, where the keys are 
the unique k-grams obtained from all possible elements in each 
thread-slice birthmark, and the values are frequencies of 
correspondingly unique k-grams. If a key is owned by multiple 
thread-slice birthmarks, its frequencies are added to be the new 
value of the key. The SS model simply treats the key-value pair 
consisting of thread identifier and the slice birthmark as each 
element comprising the final program birthmark. Formally, the 
definition of the two model are described as follows: 

Definition 5. (Slice Aggregation Model) The slice aggregation 
model is a map :f SB PB→ , where : 

• ( ){ }, | 0 ,I
pSB Birth k t t m t= ≤ ≤ ∈  is the set of thread-slice 

birthmarks and m is the number of threads in the recorded 
trace. 

• ( ),I
psb

PB Birth k t= ∪   is the software birthmark of program 

p  with input I , where t is the thread identifier of sb . 

• For each element ( ),i ig freq g PB∈  , the frequency of 

ig is calculated as ( ) ( )i j
sb

freq g freq g= ∑  where 

, ,j j isb SB g sb and g g∈  ∈   = . 

Definition 6. (Slice Set Model) The slice set model is a map 
:g SB PB→ , where: 

• ( ){ }, | 0 ,I
pSB Birth k t t m t= ≤ ≤ ∈  is the set of thread-slice 

birthmarks and m is the number of threads in the recorded 
trace. 

• ( )( ){ }, , |I
pPB t Birth k t sb SB= ∈  is the software birthmark of 

program p with input I , where t is the thread identifier of 
each corresponding sb . 

Based on the above discussions, the definition of TW-DKISB and 
TW-SCSSB can be formally described as follows. 

Definition 7. (TW-DKISB and TW-SCSSB) Let 
( ) 1 2, , , , ntrace p I e e e=  be an execution trace and its 

corresponding thread-slice birthmark set be 
( ){ }, | 0I

pSB Birth k t t m= ≤ ≤ . Then program birthmark PB can 

be generated by applying either the SA model :f SB PB→  or 
the SS model :g SB PB→ . We call the program birthmark PB as: 

• TW-DKISB, if each element ( ),ie trace p I∈ is a key 
instruction. 

• TW-SCSSB, if each element ( ),ie trace p I∈ is a system call. 
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Example 1. Let’s take the trace of system calls as an example to 
illustrate the process of generating TW-SCSSB. Suppose the 
following trace is recorded when executing program p with I. 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2, , , , , , , , , , ,trace p I t open t read t write t read t read=

 ( ) ( )2 1, , ,t write t close  

It can be observed that seven system calls were executed by two 
threads 1t and 2t . According to the definition of thread slice, this 
trace can be split into the following two slices: 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1, , , , , , , , ,slice t t open t read t write t read t close=  

( ) ( ) ( )2 2 2, , ,slice t t read t write= . 

The generated k-gram sets when 2k =  are: 

( ) ( ) ( ) ( ) ( ){ }1, , , , , , , , ,Set p I t open read read write write read read close=

and ( ) ( ){ }2, , ,Set p I t read write= ; the corresponding thread-slice 
birthmarks are: 

( ) ( ) ( ) ( ){12, , ,1 , , ,1 , , ,1 ,I
pBirth t open read read write write read=

( ) }, ,1read close  and ( ) ( ){ }22, , ,1I
pBirth t read write= . 

Finally, the TW-SCSSB of program p with input I generated with 
SA and SS model are respectively: 

( ) ( ) ( ){, ,2 , ,1 , , ,2 ,SATW SCSSB p I open read read write− =

( ) ( ) }, ,1 , , ,1write read read close  

( ) ( ) ( ){ }1 1 2 2, ,2 , 2, , , 2,I I
SS p pTW SCSSB p I t Birth t t Birth t− = . 

2.4 Similarity Calculation 
In the literature of birthmark based software plagiarism detection, 
the similarity between two programs is measured by the similarity 
of their birthmarks. In general, birthmarks mainly exist in three 
forms: sequences, sets and graphs. There are many methods for 
calculating similarity of sets that are widely adopted in the field of 
information retrieval, including Dice coefficient [6], Jaccard index 
[20], and Cosine distance [16]. Computing the similarity of 
graphs is relatively more complex. It is conducted by either graph 
monomorphism or isomorphism algorithms [5, 14] or translating a 
graph into a vector using algorithms such as random walk with 
restart [4]. In our work, we explore different methods to calculate 
the similarity of birthmarks generated with the SA and SS model. 

2.4.1 Similarity Calculation Method for Birthmarks 
Generated with SA model 
According to the definition of the SA model, the generated TW-
DKISBs or TW-SCSSBs are in the form of key-value pair set, 
therefore similarity computation methods such as Cosine distance, 
Jaccard index, Dice coefficient and Containment can be used (It is 
worth nothing that all the four metrics have been used to compute 
birthmark similarities in previous studies. To prevent favoritism, 
we provide formal definitions of the four modified metrics, and 
implement all of them in our prototype to properly compare the 
performance with others’ as shown in Section 3). However, since 
these metrics do not consider frequency of the elements, two 
different birthmarks may have the same result. In contrast, 
frequencies of k-grams in a birthmark are taken into consideration 
in our similarity calculation method. Specifically, each traditional 
metric is multiplied by a factor θ  that reflects frequency 

similarity between two birthmarks. In the following we illustrate 
how to compute the factor θ : 

For software birthmarks { }1 1 2 2, , , , , ,n nA k v k v k v=  and 

{ }' ' ' ' ' '
1 1 2 2, , , , , ,m mB k v k v k v=  , which may be either two TW-

DKISBs or two TW-SCSSBs, let ( ) ( )S keySet A keySet B= ∪ . We 

construct a vector ( )1 2, , , lA a a a=


 , in which each element 

( )
( )

,

0,
i i

i
i

v if S keySet A
a

if S keySet A

  ∈= 
 ∉

, where 1 i l≤ ≤  and iv is the value of 

key iS in A . Likewise ( )1 2, , , lB b b b=


 can be constructed. Thus 

2 2
,

, ,
, i i

i i

a A b B

min A B
where A a B b

max A B
θ

→ →

→ →

→ →
∈ ∈

 
 
 =  =  =
 
 
 

∑ ∑
 

. 

The modified metrics are defined as following: 

( ) ( )

( ) ( )

, ,

2
, ,

Jaccard

Ex Dice Containment

A BA B
Ex Cosine A B Ex A B

A BA B

A B A B
A B Ex A B

A B A

→ →

→ →

−

∩•
− = × θ;    − = × θ;

∪

∩ ∩
= × θ;   − = × θ;

+

 

And the similarity of two SA generated birthmarks can be 
calculated with ( ) ( ), ,cSim A B sim A B= , where { ,c Ex Cosine∈ −  

}, ,Ex Jaccard Ex Dice Ex Containment− − − . 

2.4.2 Similarity Calculation Method for Birthmarks 
Generated with SS model 
For software birthmarks generated by the SS model, we reduce the 
problem of calculating their similarity into finding a maximum 
weighted bipartite matching as illustrated in Figure 2. In particular, 
each node marked by a thread identifier corresponds to a thread-
slice birthmark of the thread, and a weighted edge denotes the 
similarity between two thread-slice birthmarks. 

Formally, Let ( )( ) ( )( ) ( )( ){ }1 1 2 2= , , , , , ,m mA t Birth t t Birth t t Birth t  

and ( )( ) ( )( ) ( )( ){ }' ' ' ' ' '
1 1 2 2= , , , , , ,n nB t Birth t t Birth t t Birth t be two 

TW-DKISBs or TW-SCSSBs, where birthmark A contains 
m thread-slice birthmarks and birthmark B  contains n  thread- 

t1

t2

t3

.

.

.

.

.
tm

t1'

t2'

t3'
.
.
.
.
.

tn'

A B

sim(t1,t2')
sim(t2,t3')

sim(t3,tn ')

sim
(t m

,t 1')

 
Figure 2. Schematic diagram of bipartite matching modeling 

for birthmarks generated by the SS model 
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slice birthmarks. A m n×  similarity matrix is generated by 
comparing every thread-slice birthmark in A  to each thread-slice 
birthmark in B using either of the four metrics listed in 2.4.1. 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

' ' '
1 1 1 2 1

' ' '
2 1 2 2 2

' ' '
1 2

, , ,

, , ,
,

, , ,

c c c n

c c c n

c m c m c m n

sim t t sim t t sim t t

sim t t sim t t sim t t
SimMatrix A B

sim t t sim t t sim t t

 
 
 

=  
 
  
 





   



, 

where { }, , ,c Ex Cosine Ex Jaccard Ex Dice Ex Containment∈ − − − − . 
Then a valid match can be found by applying any maximum 
weighted bipartite matching algorithms, formally denoted as 

( ) ( ) ( ) ( ){ }1 1 2 2, , , , , , ,l lMaxMatch A B u v u v u v=  where ( ),l min m n= , 

( )iu keyset A∈ , ( )iv keyset B∈ , i ju u if i j≠   ≠ , i jv v if i j≠   ≠ , 

and ( ),
l

c i j
i

sim u v∑ has the maximum value among all the 

matchings. Finally, the similarity of two SS model generated 
software birthmarks are calculated with the following formula: 

( )
( ) ( ) ( )( )( ) ( )

( ) ( )

'
' '

, ,

'

1 1

,
, i j

c i j i jt t MaxMatch A B

m n

i j
i j

sim t t count t count t
Sim A B

count t count t

∈

= =

× +
=

+

∑

∑ ∑

where ( ) ( )( )i icount t keySet Birth t= , ( ) ( )( )' '
j jcount t keySet Birth t= . 

Example 2. We take TW-SCSSBs generated by the SS model as 
an example to illustrate the process of similarity comparison. 
Suppose the following trace is recorded when executing program 

'p with I , where 'p is a copy of program p  shown in Example 1. 

( ) ( ) ( ) ( ) ( ) ( )' ' ' ' ' '
1 2 1 2 1, , , , , , , , , , ,trace p I t open t read t read t write t write=

( ) ( )' '
1 1, , ,t read t close . 

For this trace, the TW-SCSSB generated using the SS model is: 

( ) ( ) ( ){ }' '
' ' ' ' '

1 1 2 2, ,2 , 2, , , 2,I I
SS p p

TW SCSSB p I t Birth t t Birth t− = where 

( ) ( ) ( ) ( ){'
'
12, , ,1 , , ,1 , , ,1 ,I

p
Birth t open read read write write read=

( ) }, ,1read close  and ( ) ( ){ }'
22, , ,1I

pBirth t read write= . 

Assume Ex-Jaccard is used as the metric to compute the similarity 
between each slice birthmark of the two TW-SCSSBs, that is 

( )
( ) ( )
( ) ( )

'

'

'
1 2'

1 2 '
1 2

2, 2, 1,
82, 2,

I I
p p

Ex Jacard I I
p p

Birth t Birth t
sim t t

Birth t Birth t
θ−

∩
= × =

∪
. It leads to 

a similarity matrix 
1 0.125

0.125 1
 
 
 

 , base on which a maximum 

matching  can be found that ( ) ( ){ }' '
1 1 2 2, , ,MaxMatch t t t t= . Finally, 

similarity of the two birthmarks generated by the SS model, 
( ), ,2ssA TW SCSSB p I= −  and ( )' , ,2ssB TW SCSSB p I= − , is 

computed as ( ) 1 8 1 2, 1
10 10

Sim A B × ×
= + = . 

2.5 Plagiarism Detection 
The purpose of extracting birthmarks and calculating their 
similarity is to eventually determine whether there exists 
plagiarism. Considering that there are other random factors such 

as DMA and interrupts besides thread scheduling, multiple 
similarity scores are computed by executions under multiple 
inputs. The average of the scores is taken as an evidence of 
plagiarism. 

Formally, Let AP  and BP  be two programs under test. Let the 
birthmarks extracted from the programs using either the SS model 
or the SA model under the inputs 1 2, , , nI I I be 1 2, , , nA A A  and 

1 2, , , nB B B respectively. The similarity between AP  and BP can 

be calculated by ( )
( )

1

,
,

n

j j
j

A B

Sim A B
Sim P P

n
==

∑
, whose value is 

between 0 and 1. We then decide whether there exists plagiarism 
according to the similarity scores and a threshold ε as follows: 

( )
1 ,

, ,
A B

A B A B

P P are classified as copies
Sim P P P P are classified as independent

otherwise inconclusive

ε
ε

≥ −       
= ≤       
   

 

2.6 Tool Overview 
Figure 3 depicts the overview of our prototype in which we have 
implemented all the techniques discussed in this section. Given 
the plaintiff (original program) and the defendant (suspicious 
program) in binary code, and a set of inputs, our prototype 
executes both programs with the same input one by one. 
Meantime, the dynamic analysis module monitors the executions 
and identifies the key instructions and the system calls in real time. 
The monitoring produces two sequences. After sequences of both 
plaintiff and defendant programs are available, they are fed into 
the pre-processor to filter out noise and generate formatted 
elements that constitute valid execution traces. Then the birthmark 
generator performs thread projection, extracts thread-slice 
birthmarks and generates TW-DKISBs and TW-SCSSBs with 
either the SA or the SS model. Next the similarity scores are 
computed between two TW-DKISBs or two TW-SCSSBs by the 
similarity calculator. Finally, the plagiarism decider judges 
whether the defendant is innocent or guilty according to the 
average of similarity scores computed under different inputs and 
the given threshold ε . 
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Figure 3. Overview of thread-aware birthmarks based 

plagiarism detection system 
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3. EXPERIMENTS AND EVALUATION 
A high quality birthmark manifests in that the ratio of false 
classifications (both inconclusive and incorrectly classified cases 
are treated as false classifications) should be low enough for a 
specific ε . To be specific, the similarity scores calculated between 
a program and its derivative versions generated by applying 
semantic-preserving code transformations should be high enough 
so as to recognize copies, while scores between independently 
developed programs should be low enough to distinguish them. 
Generally in the literature, the following two properties of a 
birthmark should be satisfied to make it valid. We restate them by 
referring to the descriptions of Myles [18] and Seokwoo [6]. 

Property 1. (Resilience) Let p be a program and 'p be a 
derivative version generated by applying semantic-preserving 
code transformation τ to p . We say a birthmark pB is resilient to 

τ if ( )', 1Sim p p ε≥ − . 

Property 2. (Credibility) Let p and q  be independently 
developed programs which may accomplish the same task. We say 
a birthmark pB  is credible if ( ),Sim p q ε≤ . 

In the following sections, we firstly evaluate the TW-DKISBs and 
the TW-SCSSBs generated by the SA and SS models against the 
above two properties to check if they are valid software 
birthmarks. The quality of our birthmarks are further compared 
with other birthmarks using the AUC metric. It should be noted 
that either TW-DKISBs or TW-SCSSBs are generated with k-
gram algorithm, which means the birthmarks are different when 
choosing different values of k . However, as it has been 
confirmed in most previous papers [22, 24, 20] where k-gram is 
also used to generate birthmarks, setting the value of k to be 4 or 
5 is a proper compromise between accuracy and efficiency. Hence, 
all experiments conducted in the following adopt a k value of 5. 

3.1 Validation of Resilience Property 
3.1.1 Resiliency to Different Compilers and 
Optimization Levels 
A software plagiarist may try to evade detection by choosing a 
different compiler or changing compiler optimization levels. This 
can be considered as a relatively weak semantic preserving code 
transformation technique. We choose a multithreaded 
compression software pigz-2.3 as the experimental object to 
evaluate the resilience property of our thread-aware birthmarks 
against different compilers and optimization levels. 

In the experiment, two different compilers LLVM3.2 and 
GCC4.6.3 are used to compile the source code of pigz with five 
optimization levels (-O0, -O1, -O2, -O3 and -Os) and the debug 
option (-g) switched on or off, thus generating totally 20 different 
executables. The statistical characteristics of the binaries are 
collected using the disassembler IDA Pro. Table 2 shows some 
statistical differences (maximum value, minimum value, average 
value, and the standard deviation) among the executables. It can 
be observed that these binaries vary significantly with respect to 
the characteristics listed in the table headings (size of the binary, 
number of functions, number of instructions, number of blocks 
and number of calls). 

TABLE 2. Statistical differences for all versions of pigz 
generated with different compilers and optimization levels 

 Size(kb) NoF. NoI. NoB. NoC. 

Max. 295 415 22178 3734 2376 

Min. 84 342 13860 2672 1031 

Avg. 151.75 380.25 16269 3068.9 1206.8 

Stdev. 60.53 23.4 2679 286.58 280.9 

Each pair of the generated binaries of pigz are executed with the 
same input. TW-DKISBs and TW-SCSSBs are generated and 
their similarity is computed. As discussed in Section 2.5, results 
based on a single input may not be credible, therefore we 
conducted experiments with 18 different inputs (all the 
experiments conducted below are conducted with multiple inputs 
by default). To measure the resilience capability, the default 
threshold value 0.25ε =  is used. 

Table 3(a) summarizes the results of the experiment, where the 
heading “Avg.” indicates the average similarity score of all 
comparison pairs, “Min.” indicates the minimum value computed 
among all pairs, and “Acc.” indicates the accuracy of our 
prototype. The accuracy is calculated by the ratio of pairs 
classified as copies. It can be observed that TW-DKISBs 
generated by either SA or SS model are very accurate regardless 
of what types of similarity metrics are adopted. In particular, the 
accuracy is nearly 1.0 when Ex-Cosine is selected to compute 
similarity. TW-SCSSBs exhibit similar accurate results as TW-
DKISBs except for the Ex-Jaccard metric where an accuracy of 
merely 0.47 is reached. This is due to the fact that most of the 
similarity scores for this case are around 0.7 with a threshold 
value 0.25ε = . 

3.1.2 Resiliency to Special Obfuscation Tools 
In this section, we evaluate the resilience of the thread-aware 
birthmarks against advanced obfuscation techniques available in 
sophisticated tools. Unfortunately the only binary obfuscator we 
found is a commercial obfuscator called CloakWare Security 
Suite. Publically available obfuscators or to say packers such as 
Upx and WinUpack only implement code compression, 
encryption and packing obfuscations. Executables processed with 
these techniques will become rather different, bringing great 
challenge to static birthmark based approaches, since an unpack 
process is needed first to restore the original binary executables 
before analysis. However, since executables processed with them 
must be decompressed or decrypted during runtime in order to be 
executed, making dynamic birthmarks have innate immunity to 
them. Therefore in our empirical study we choose the Java byte 
code obfuscation tool SandMark [8] that implements a series of 
advanced semantic-preserving transformation techniques. We use 
it with 15 application obfuscations, 7 class obfuscations and 17 
method obfuscations to generate a group of obfuscated versions. 
Several commercial and open source obfuscators including 
Allatori, DashO, Jshrink, ProGuard and RetroGround (in the 
following we call these tools Allatori-Series) are also selected to 
generate semantic equivalent derivative versions since the latest 
SandMark supports Java 1.4 only. In addition, because our system 
works on binary executables, obfuscated versions are converted to 
x86 executables with GCJ, the GNU ahead-of-time compiler for 
java. 
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TABLE 3. Experimental results for resilience evaluation of TW-DKISBs and TW-SCSSBs 

(a) Resilience evaluation against obfuscations caused by different compilers and optimization levels 

 

TW-DKISB TW-SCSSB 

SA Model SS Model SA Model SS Model 

Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc. 

Ex-Cosine 1 1 1 1 1 1 0.921 0.875 1 0.912 0.862 1 

Ex-Jaccard 0.917 0.656 0.832 0.945 0.747 0.937 0.752 0.623 0.474 0.759 0.626 0.474 

Ex-Dice 0.95 0.785 1 0.967 0.849 1 0.851 0.765 1 0.85 0.761 1 

Ex-Containment 0.95 0.698 0.916 0.972 0.747 0.968 0.851 0.758 0.997 0.85 0.758 0.997 

(b) Resilience evaluation against obfuscations provided by SandMark 

 

TW-DKISB TW-SCSSB 

SA Model SS Model SA Model SS Model 

Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc. 

Ex-Cosine 0.999 0.974 1 0.997 0.921 1 0.994 0.979 1 0.967 0.942 1 

Ex-Jaccard 0.965 0.928 1 0.969 0.920 1 0.864 0.757 1 0.908 0.844 1 

Ex-Dice 0.982 0.959 1 0.984 0.948 1 0.924 0.855 1 0.939 0.890 1 

Ex-Containment 0.984 0.977 1 0.986 0.962 1 0.925 0.849 1 0.939 0.882 1 

(c) Resilience evaluation against obfuscations provided by Alloatori-Series 

 

TW-DKISB TW-SCSSB 

SA Model SS Model SA Model SS Model 

Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc. Avg. Min. Acc. 

Ex-Cosine 0.997 0.963 1 0.993 0.893 1 0.993 0.972 1 0.955 0.870 1 

Ex-Jaccard 0.929 0.818 1 0.930 0.774 1 0.786 0.568 0.818 0.842 0.653 0.966 

Ex-Dice 0.962 0.889 1 0.959 0.826 1 0.875 0.723 0.967 0.897 0.755 1 

Ex-Containment 0.967 0.920 1 0.966 0.846 1 0.877 0.653 0.933 0.898 0.749 0.999 

 
ConGzip and OffBzip2, two java programs that accomplish multi- 
threaded gzip and bzip2 compression respectively using the java 
zip library and At4J [2] library, are developed and selected as the 
experimental objects. Each obfuscation technique implemented in 
the SandMark and Allatori-Series is applied to the two programs 
to generate a series of obfuscated versions. To ensure the semantic 
equivalence after these transformations, all obfuscated versions 
are tested with a set of inputs to check for correctness, and failed 
ones are removed. Finally, 58 different versions are generated for 
ConGzip, including 29 SandMark obfuscated versions and 29 
Allatori-Series obfuscated ones. Only 35 different versions are 
generated for OffBzip2, since SandMark failed to apply any of its 
transformations due to its poor support for new java features used 
in OffBzip2. 

Next the thread-aware birthmarks are extracted and their similarity 
scores are computed between each of the original program and its 
obfuscated versions. Table 3(b) and 3(c) show the experimental 
results of ConGzip with respect to SandMark and Allatori-Series 
respectively. We can see that both TW-DKISBs and TW-SCSSBs 
are accurate (with a lowest value of 0.818), and the average scores 
vary from 0.8 to 1.0. Similar results are observed in the 
experiments of OffBzip2. It indicates that our thread-aware 
birthmarks can correctly identify almost all the derivatives 

generated with various semantic-preserving code transformations. 
These results are strong evidence that our birthmarks are resilient 
and robust. 

3.2 Validation of Credibility Property 
In the following experiments, credibility of TW-DKISBs and TW-
SCSSBs is evaluated by checking the capability of distinguishing 
independently developed programs. Three types of software that 
are widely used in Linux are selected as the experimental objects, 
including 6 multithreaded compression software (lbzip2, lrzip, 
pbzip2, pigz, plzip and rar), 10 web browsers (arora, chromium, 
dillo, Dooble, epiphany, firefox, konqueror, luakit, midori and 
seaMonkey), and 5 audio players (cmus, mocp, mp3blaster, 
mplayer and sox). 
Although software of the same categories usually overlap greatly 
in their functionalities, they can be rather different at the source 
code level if implemented independently due to different 
algorithms adopted, different design patterns applied, different 
coding styles, etc. 
In the experiments conducted, only TW-SCSSBs are evaluated for 
the browsers, since the recorded key instructions are too large to 
handle. But for the audio players and compression programs, both 
TW-DKISBs and TW-SCSSBs are evaluated.  
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TABLE 4. Experimental results for credibility evaluation of TW-DKSIBs and TW-SCSSBs 

(a) Credibility evaluation of TW-SCSSBs using 10 web browsers 
 SA Model SS Model 

Avg. Max. Acc. Avg+. Avg-. Avg. Max. Acc. Avg+. Avg-. 

Ex-Cosine 0.127 0.57 0.8 0.323 0.081 0.125 0.57 0.8 0.311 0.08 

Ex-Jaccard 0.07 0.36 0.933 0.188 0.037 0.057 0.365 0.956 0.147 0.03 

Ex-Dice 0.112 0.496 0.822 0.278 0.07 0.089 0.485 0.889 0.223 0.051 

Ex-Containment 0.118 0.588 0.822 0.281 0.078 0.096 0.588 0.878 0.226 0.06 

(b) Credibility evaluation using software of different categories 

 

TW-DKISB TW-SCSSB 

SA Model SS Model SA Model SS Model 

Avg. Max. Acc. Avg. Max. Acc. Avg. Max. Acc. Avg. Max. Acc. 

Ex-Cosine 0.083 0.631 0.873 0.071 0.61 0.891 0.108 0.611 0.818 0.1 0.616 0.836 

Ex-Jaccard 0.025 0.181 1 0.018 0.165 1 0.043 0.269 0.964 0.042 0.305 0.982 

Ex-Dice 0.042 0.283 0.945 0.03 0.26 0.982 0.072 0.418 0.891 0.066 0.435 0.909 

Ex-Containment 0.065 0.336 0.927 0.051 0.338 0.982 0.077 0.481 0.909 0.072 0.485 0.936 

The experimental results are very accurate for both TW-DKISBs 
and TW-SCSSBs.  Due to space limitation we list results for the 
web browsers only. 

As summarized in Table 4(a) for the web browsers, the accuracy 
values (defined by the ratio of pairs classified as independent) for 
TW-SCSSBs generated by either the SA or SS model are all very 
high regardless of what types of similarity metrics are adopted. 
The corresponding average scores are all around 0.1. Also, the 
maximum values computed under each scheme are counted. 
Besides, we note that five of the browsers (arora, Dooble, 
epiphany, luakit and midori) are Webkit-based while the others 
utilize different layout engines. Therefore we also count the 
average similarity scores just between these five Webkit-based 
browsers indicated by “Avg+”, and the average similarity scores 
between the Webkit-based and non-Webkit-based browsers 
indicated by “Avg-”. As expected, the values in the “Avg+” 
columns are four to five times bigger than values in the “Avg-” 
columns. It indicates that our birthmarks have the potential to 
recognize shared modules used in different programs, implying 
the possibility of applying them to library or partial plagiarism 
detection. 
In this section, similarity between the 6 compression programs 
and the 5 audio players are computed with respect to each scheme, 
to evaluate the credibility of TW-DKISBs and TW-SCSSBs 
against independently implemented software in different 
categories. Similarly, the average scores, the maximum scores and 
the accuracies are computed and summarized in Table 4(b). The 
results are good enough to prove the credibility of our birthmarks. 

3.3 Comparison with Traditional Birthmarks 
3.3.1 Performance Evaluation Metric 
To compare the performance of our birthmarks with others, we 
utilize the AUC metric adopted in [9], namely the area under the 
F-Measure curve. However, they model the problem of plagiarism 
detection as a binary decision problem (guilty and innocent), 
while the detection result given by our system may be guilty, 

innocent and inconclusive according to the formula in Section 2.5. 
So based on the implication of precision and recall, the precision 
and recall for our plagiarism detection method are customized to 
the following definitions: 

EP JP EI JI
Precision

JP JI
∩ + ∩

=
+

;
EP JP EI JI

Recall
EP EI

∩ + ∩
=

+
 

where EP  represents the set of comparison pairs that have 
plagiarism, and JP represents the set of comparison pairs that are 
judged plagiarism by our tool. Similarly, EI represents the set of 
comparison pairs that are independent, and JI represents the set 
of comparison pairs that are judged as independent by our tool. 
The weighted harmonic mean of precision and recall, namely the 
F-Measure metric, is defined as: 

2 Precision RecallF Measure
Precision Recall
× ×

− =
+

. 

As mentioned in Section 2.5, the detection result of our approach 
relies on the adopted value of threshold ε . By increasing the 
value of ε from 0 to 0.5, we can correspondingly draw an F-
Measure curve. And the area under the curve (AUC) is used as the 
metric to evaluate the performance of our birthmarks against 
others over the entire space of threshold ε . 

3.3.2 Comparison Result 
In this group of experiments, performance of TW-DKISBs and 
TW-SCSSBs are compared with traditional DKISBs and SCSSBs. 
All the comparison pairs that appear in Section 3.1 and 3.2 are 
taken as the experimental objects, which means all comparisons 
conducted in Section 3.1 to validate the resilience property with 
various semantic-preserving transformation generated copies 
constitute the set EP , and all comparisons conducted in Section 
3.2 to validate the credibility property with various independently 
developed programs constitute the set EI . Similarly, JP is 
consisted of comparison pairs detected as copies among all pairs, 
and JI consists of pairs detected as independent.
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TABLE 5. AUC analysis results 
 SATW DKISB−  SSTW DKISB−  DKISB SATW SCSSB−  SSTW SCSSB−  SCSSB 

Ex Cosine−  0.93 0.934 0.93 0.935 0.926 0.933 
Ex Jaccard−  0.887 0.908 0.874 0.682 0.744 0.537 
Ex Dice−  0.907 0.923 0.9 0.804 0.828 0.721 
Ex Containment−  0.909 0.923 0.9 0.807 0.829 0.721 

Due to space limitations, we only give the F-Measure curves for 
system call sequence based birthmarks, as depicted in Figure 4. 
There are four subfigures, each of which corresponds to one of the 
four metrics selected to compute similarity. In each subfigure, the 
lines in green and red represent the F-Measure curves of TW- 
SCSSBs generated with the SA model and the SS model 
respectively. The blue lines represent the F-Measure curve plotted 
for SCSSB. It can be observed that the two TW-SCSSBs do not 
exhibit significant difference in their F-Measure values, but both 
are greater than that of SCSSBs’ across the whole x-axis in each 
subfigure except for the Ex-Cosine metric subfigure in which the 
two TW-SCSSBs perform as good as traditional SCSSB. 

For a more specific and scientific comparison, we compute the 
AUC for each birthmark with respect to each similarity metric, 
and summarize the results in Table 5. As it shows, the AUCs of 
thread-aware birthmarks are all greater than that of other 
birthmarks’ no matter what similarity metric is adopted. This 
indicates that TW-DKISBs and TW-SCSSBs perform better than 
DKISB and SCSSB. Also, it can be observed that the performance 
improvement between TW-DKISBs and DKISB is minimal, while 
the improvement between TW-SCSSBs and SCSSB is significant 
(with a maximum performance gain of 38.5% for TW-SCSSB 
generated by the SS model using the Ex-Jaccard Metric). This 
indicates that system call sequence based birthmarks are more 
easily affected by thread scheduling. In addition, the Ex-Cosine 
metric is less sensitive to thread scheduling compared with the 
other three metrics. 

4. RELATED WORK 
Broadly speaking, the research areas related to our work include 
software watermarking [7], plagiarism detection, code clone 
detection, and malware identification. In this section we focus on 
the discussion of birthmark based software plagiarism detection 
techniques. We group relevant works into two categories: static 
and dynamic. Works targeting source code are neglected since 
there have already been many mature detection systems and tools 
[14, 19, 11]. 

Static binary code based birthmarks: Myles and Collberg [18] 
proposed a k-gram based static birthmark for Java, where sets of 
Java bytecode sequences of length k are taken as the birthmarks 
and similarity between two birthmarks are calculated through set 
operations. The frequencies of elements in the sets are ignored. 
They evaluated their birthmark using several small java programs. 
Although the birthmark shows good robustness, it is vulnerable to 
code transformation attacks. Lim proposed to use control flow 
information that reflects runtime behaviors to supplement static 
approaches [13]. More recently Lim proposed to analyze stack 
flows obtained by simulating the operand stack movements to 
detect copies [12]. 

Dynamic software birthmarks: Myles and Collberg [17] 
suggested to use whole program path generated by compressing a 
whole dynamic control flow trace into WPP form to uniquely 

identify program. Schuler [20] treated Java standard API call 
sequences at object level as dynamic birthmarks for java programs. 
Such approach exhibited better performance than WPP birthmarks. 
Tamada [21] introduced two API based birthmarks for windows 
executables extracted at runtime: Sequence of API Function Calls 
(EXESEQ) and Frequency of API Function Calls (EXEFREQ). 
However these methods are all language dependent. To address 
the problem Wang et al. [24] proposed two dynamic birthmarks 
based on system calls: System Call Short Sequence birthmark 
(SCSSB) and Input Dependent System Call Subsequence 
birthmark (IDSCSB). By integrating data flow and control flow 
dependency analysis, [23] proposed a system call dependency 
graph based birthmark (SCDG). Recently [10, 26] suggested to 
characterize software with core values and applied it to software 
and algorithm plagiarism detection. A heap graph birthmark based 
on heap memory analysis is proposed by Patrick et al. [5], and 
graph monomorphism algorithm is used to compute the similarity. 
In their experiments, the birthmark was applied to the detection of 
module plagiarism in JavaScript, and the results were highly 
accurate. 
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Figure 4. F-Measure curves for TW-SCSSBSA, TW-SCSSBSS, 

and SCSSB 

5. CONCLUSION 
As multithreaded software become increasingly more popular, 
current dynamic software plagiarism detection technology geared 
toward sequential programs are no longer sufficient. This paper is 
a first step to fill the gap by proposing thread aware software 
plagiarism detection techniques. The primary contributions of this 
paper are as following: 

• Two thread-aware dynamic birthmarks TW-DKISB and 
TW-SCSSB are proposed for plagiarism detection of 
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multithreaded programs. Our algorithms are able to extract 
the birthmarks at binary level without the need for source 
code or java bytecode. In particular, TW-DKISB can be 
extracted independent of operating systems.  

• We have developed a prototype and evaluated the 
effectiveness of our algorithms. The extensive experiments 
show that our proposed approaches are not only accurate in 
detecting plagiarism of multithreaded programs but also 
robust against semantic-preserving obfuscations. 

• A suite of benchmarks is complied. We believe there will be 
more research on plagiarism detection for multithreaded 
programs. The existence of such benchmarks will be 
beneficial for researchers to conduct experiments and 
present their findings.  The benchmarks are available at: 

http://labs.xjtudlc.com/labs/benchmark.html 
To the best of our knowledge, our work is the first that addresses 
the challenges of applying dynamic birthmark based approaches 
for plagiarism detection of multithreaded programs. We envision a 
future when most applications are multithreaded programs and we 
plan to continue the research to improve accuracy and efficiency 
of the proposed algorithms. 
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