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Abstract—The rapid growth of Android malware has posed
severe security threats to smartphone users. On the basis of the
familial trait of Android malware observed by previous work,
the familial analysis is a promising way to help analysts better
focus on the commonalities of malware samples within the same
families, thus reducing the analytical workload and accelerating
malware analysis. The majority of existing approaches rely
on supervised learning and face three main challenges, i.e.,
low accuracy, low efficiency, and the lack of labeled dataset.
To address these challenges, we first construct a fine-grained
behavior model by abstracting the program semantics into a
set of subgraphs. Then, we propose SRA, a novel feature that
depicts the similarity relationships between the Structural Roles
of sensitive API call nodes in subgraphs. An SRA is obtained
based on graph embedding techniques and represented as a
vector, thus we can effectively reduce the high complexity of
graph matching. After that, instead of training a classifier with
labeled samples, we construct malware link network based on
SRAs and apply community detection algorithms on it to group
the unlabeled samples into groups. We implement these ideas
in a system called GefDroid that performs Graph embedding
based familial analysis of AnDroid malware using unsupervised
learning. Moreover, we conduct extensive experiments to evaluate
GefDroid on three datasets with ground truth. The results show
that GefDroid can achieve high agreements (0.707-0.883 in term
of NMI) between the clustering results and the ground truth.
Furthermore, GefDroid requires only linear run-time overhead
and takes around 8.6s to analyze a sample on average, which is
considerably faster than the previous work.

Keywords-Android malware, graph embedding, familial anal-
ysis, unsupervised learning

I. INTRODUCTION

With the rapid development of smartphones, mobile appli-

cations (apps) have become an inherent part of our everyday

life since many convenient services are provided to us through

mobile apps. Unfortunately, Android, the most popular mobile

operating system, has become the major target of 97% mobile

malware [1]. A new security report showed that about 7.57

million malware samples were captured in 2017 [2]. Such

malware has posed severe security threats to smartphone users.

Many recent studies [3]–[5] reveal that the Android malware

exhibits obvious familial trait because attackers usually create

malware by injecting the similar malicious components into

different popular apps. In other words, malware samples within
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the same family have similar malicious behaviors. Similar to

the clone detection [6]–[9] that discovers similar fragments

between code snippets, familial analysis is a promising way

to identify the common malicious components among malware

samples within the same families, thus reducing the analytical

workload and accelerating malware analysis.

Most existing familial analysis approaches rely on su-

pervised learning that first trains a classifier using labeled

dataset and then use it to classify new malware samples.

They differ in their features, which could be roughly divided

into two categories, including (1) string-based features (e.g,

permissions [10] and API calls [11]); (2) graph-based features

(e.g., function call graph (FCG) [12] and control flow graph

(CFG) [13]). However, these approaches have three main

limitations as follows.

Low accuracy: String-based features are insufficient

to distinguish the malicious components and the

legitimate part of popular apps. For example, the API

getLastKnownLocation() for obtaining the location

information is widely used in both malware samples and

benign apps [14].

Low efficiency: Although graph-based features could profile

the behaviors of malware samples, the similarity calculation

of the graph-based features is bounded by the efficiency of

existing graph matching approaches [15], which are usually

slow since the graph isomorphism problem is NP complete.

Lack of labeled dataset: It is time-consuming and labor-

intensive to label a large scale of malware samples with family

names. Moreover, since classifiers are trained using known

malware samples, they cannot correctly classify new malware

samples from unknown families. Note that retraining the

classifier model for every new sample may be impractical [16].

To tackle these challenges, we propose GefDroid, a nov-

el Graph embedding based familial analysis approach of

AnDroid malware with the following salient features:

High accuracy: To achieve a high accuracy of familial

analysis, we use the graph-based features that contain the

structural information to profile the app behaviors rather than

the string-based features. Specifically, we abstract the program

semantics of an app into an FCG representation, and further

divide the FCG into a set of small subgraphs according to

the app’s file directory structure. By doing so, a fine-grained

771

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00085



behavior model is constructed in order to locate the malicious

components when performing familial analysis.

High efficiency: To reduce the high complexity of directly

using graph matching, inspired by the graph embedding

techniques that can transform the high-dimensional graph

structure data into low-dimensional space, we propose a novel

feature called SRA to depict the similarity relationships of

Structural Roles of sensitive API call nodes in a graph.

The structural roles refer to the graph position and the

structure of local graph neighborhood. Specifically, we employ

graph embedding techniques to learn low-dimensional vector

representations for graph nodes, and then calculate the SRA

based on the vector representations of sensitive API call nodes.

Finally, the similarity computation of two graphs is simplified

to the similarity comparison between two vectors based on the

generated SRAs instead of the high-cost graph matching.

No need of labeled dataset: Instead of training a classifier, we

leverage unsupervised learning to cluster unlabeled samples

according to their similarity. In particular, we construct a

malware link network (MLN) to represent the similarity

relationships among samples based on their similar SRAs.

Then, we apply community detection algorithms to group the

samples into a set of clusters.

After applying GefDroid to three widely-used datasets,

we find that it exhibits impressive performance of familial

analysis. In summary, our major contributions include:

(i) We propose SRA, a novel feature to represent the

similarity between the structural roles of sensitive API

call nodes in a graph. Based on SRAs, we transform

the high-cost graph matching into an easy-to-compute

similarity calculation between vectors.

(ii) We propose and develop GefDroid, a novel system

for familial analysis of Android malware by using

unsupervised learning and constructing malware link

network (MLN) based on SRAs.

(iii) We conduct extensive experiments to evaluate GefDroid.

The results show that GefDroid achieves high agree-

ments (0.707-0.883 in term of NMI) between clustering

results and the ground truth datasets. Furthermore,

GefDroid requires only linear run-time overhead and

takes around 8.6s to analyze a sample on average, which

is considerably faster than the previous work.

The rest of this paper is organized as follows. Section

II introduces the problem. Section III details GefDroid and

Section IV reports the experimental results. After discussing

the threats to validity in Section V, we introduce the related

work in Section VI and conclude the paper in Section VII.

II. MOTIVATION AND PROBLEM DEFINITION

A. Motivating Scenario

Let us consider a security analyst who faces thousands of

unlabeled malware samples captured every day as illustrated

in Fig. 1. These malware samples are generally produced

by injecting different kinds of malicious components into

popular apps. The analyst aims to find and analyze the

Fig. 1: Motivation Scenario of GefDroid

new injected malicious components. However, it is time-

consuming to conduct an in-depth analysis on each sample.

Therefore, the analyst tries to group these malware samples

into a set of clusters, where the samples belonging to

the same cluster share similar malicious components. By

inspecting the similar malicious components in each cluster,

the analytical workload of the analyst can be effectively

reduced. However, the analyst faces two challenges: First, how

to effectively identify the malicious components that usually

constitute only a small portion of the samples and may not

be implemented in the same way? Second, how to efficiently

accomplish the clustering of thousands of malware samples

with low overhead? Note that directly applying pair-wise exact

matching is neither effective nor efficient [17].

To tackle the challenges in the above scenario, we first

propose a fine-grained feature called SRA that can not only

retain the properties of malicious components but also can be

resilient to their polymorphic variants. Furthermore, SRA is

represented as vectors in a low-dimensional space so that a

great deal of malware samples can be handled efficiently. We

further develop a new system named GefDroid for automating

the analysis process.

B. Problem Definition

Let M = {m1,m2, . . . ,mK} be a set of given Android

malware samples without family labels, where K is the

number of samples. The main task of our work is to construct

an MLN that depicts the similarity relationships among

different malware samples. Let MLN = {M,L}, where

L ⊆ M × M denotes the edge set. Each (mi,mj , wij) ∈ L

denotes that there exists an edge with weight wij between mi

and mj and they share similar malicious components. The

key challenge for this task is how to determine the edges

between malware samples. Thus, in our approach, we aim to

propose an effective and efficient feature, based on which we

can quickly determine the similarities between thousands of

malware samples with high accuracy.

Then, the constructed MLN is similar to a social network.

The malware families that we aim to find are regarded as the

communities existed in the network. In general, community

detection algorithms are widely used to detect community

structures in social networks, thus they can be applied on our

constructed MLN in a similar way. Formally, after constructing

the MLN, we aim to find the families as:

C(MLN) ⇒ Y = {y1, y2, . . . , yR} (1)

where Y denotes the set of clusters generated by community

detection algorithm C; R denotes the number of generated

clusters. Note that, each sample in M belongs to only one

cluster in Y , thus
∑R

r=1 |yr| = K.
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Fig. 2: The overview architecture of GefDroid: (1) Preprocessing stage contains three processes, FCG construction (Section III-A1), graph partition (Section
III-A2), and noise removal (Section III-A3); (2) Feature extraction stage contains three processes, graph embedding (Section III-B1), SRA generation (Section
III-B2), and similarity calculation (Section III-B3); (3) Familial clustering stage contains two processes, MLN construction (Section III-C1) and community
detection (Section III-C2).

III. METHODOLOGY

Fig. 2 illustrates the overview architecture of GefDroid,

which consists of three main stages.

The preprocessing stage constructs the basic behavior model

for each malware sample, and it contains three processes. First,

an FCG is constructed to depict the program semantics of a

malware sample. Second, due to the inefficiency of analyzing

the whole FCG, it is divided into a set of subgraphs according

to the app’s file directory structure. Third, the subgraphs

that belong to the third-party or advertisement libraries are

regarded as noises and are removed from the subgraph set.

In the feature extraction stage, an SRA is extracted

from each subgraph to perform an easy-to-compute similarity

calculation between vectors instead of the high-cost graph

matching between subgraphs.

In the familial clustering stage, to perform a clustering task

of the malware samples without family labels, an MLN is

first constructed based on the similar SRAs between samples.

Then, community detection algorithms are applied on the

MLN to divide it into a set of clusters, which would be

regarded as malware families.

A. Preprocessing

1) FCG Construction: Android apps are normally written

in Java and compiled to dalvik code (DEX) stored in a

classes.dex file. The compiled code and the required

resources are packaged into an APK file. On the basis of

existing disassemble tools (e.g., apktool [18]), we can obtain

the dalvik code from the APK.

Given that the dalvik code can be easily changed by typical

code obfuscation techniques (e.g., renaming of methods or

classes), directly analyzing the dalvik code is not effective.

Furthermore, the malware samples within the same family

only share similar malicious components that constitute only

a small portion of the apps, it is also not efficient to mine

similar code snippets with information retrieval techniques.

To retain the program semantics and be resilient to typical

code obfuscation techniques, different kinds of effective graph

models, including FCG [12], [19], [20], CFG [6], [21], [22],

and user interface graph (UIG) [23], [24], are proposed. In

our approach, we use FCG rather than CFG and UIG as our

graph model to depict app behaviors because of two reasons.

First, UIG is not suitable for similarity detection between

malware samples since they usually have entirely different

UIs. Second, although CFG is a fine-grained graph model that

contains detail information of the basic blocks in methods, the

extraction and analysis of CFGs is a time-consuming job that

requires considerable computational resources. In addition, the

results of related approaches [12], [19], [20] have proved

that FCG contains enough semantic information to perform

malware analysis.

To construct the FCG of a given app, we extract the callers

and callees from the dalvik code by identifying the invocation

statements, such as “invoke-direct.” Then we add the callers

and callees as nodes in a graph and insert an edge between two

nodes if a function call relation exists between them. The FCG

is represented as a directed, unweighted graph G = (V,E).

• V = {vi|1 ≤ i ≤ n} denotes the set of functions invoked

by an app, where each vi ∈ V indicates a function name.

• E ⊆ V × V denotes the set of function calls, where edge

(vi, vj) ∈ E indicates that a function call exists from the

caller function vi to the callee function vj .

2) Graph Partition: Thousands of nodes are usually found

in a constructed FCG. The analysis of entire FCGs are

neither effective (i.e., the malicious components constitute

only a small portion) nor efficient (i.e., excessive number of

nodes and edges to analyze) [19]. However, the malicious

components are generally inserted as a package of class

files into the popular benign apps [25]. For example, the

malware samples in the family called adrd are produced by

injecting the malicious package called com.xxx.yyy, where

the malware samples receive control instructions from control

servers and send collected device information to a data server.

Therefore, it is a promising way to leverage the app’s file

directory structure rather than its whole graph to identify the

commonalities among malware samples. To this end, we divide

the FCG into a set of subgraphs as:

Fdiv(G) ⇒ SG = {sgt|1 ≤ t ≤ T}, (2)

where Fdiv(∗) denotes the graph partition function and T

denotes the number of class files of the given app. Specifically,

we first traverse the app’s file structure and record all the class

file names. Then, for each class file, a subgraph is constructed

by extracting the corresponding part in FCG. For example,

to construct the subgraph of a class file whose name is

com.geinimi.c, we extract all the caller nodes whose class

names are com.geinimi.c and add them into a subgraph.

Then we add their callee nodes as well as the corresponding

edges into the subgraph.

3) Noise Removal: It is worth noting that the widely-

used third-party and advertisement libraries can introduce false

positive links when constructing the MLN. For example, two
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malware samples that belong to different families might use

the same advertisement libraries such as com.alipay.sdk,

which is a widely-used library for financial apps. Thus, the

similarity between the samples that share any common third-

party or advertisement libraries would be higher than their true

similarity in terms of malicious activities.

To solve the problem, two filtering methods are applied in

GefDroid. First, a list that contains widely-used library names

provided by existing approaches [26], [27] is constructed.

Second, a list of class names collected from 5,000 benign

apps is also constructed. The class names on the two lists

are regarded as noises and their corresponding subgraphs are

removed from the subgraph set. Even if the two lists can work

well for most apps, they are not sound for the class files whose

names are obfuscated as a, b or c. To this end, we use the tool

Deguard [28] to reverse the obfuscated names of given apps.

Then we are able to remove the subgraphs of such obfuscated

class files if they are obtained in the above two lists.

B. Feature Extraction

1) Graph Embedding: After the construction of graph mod-

els, it is straightforward to apply graph matching algorithms

(e.g., bipartite graph matching [15]) to perform app similarity

detection. However, the graph matching algorithms are slow

since they require super-linear time running in the graph size.

Furthermore, there are generally hundreds of thousands of

graphs that are required to calculate similarities between each

other. Thus, the approaches [12], [21], [22], [29] based on

graph matching algorithms are inevitably inefficient.

In recent years, deep learning [30] has been applied to many

application domains, including graph embedding [31]–[35],

which aims at learning low-dimensional vector representations

for nodes of a given graph. Graph embedding has been proven

to be useful in many tasks of graph analysis, including link

prediction [36], node classification [37], and visualization [38].

The learned low-dimensional vector representations for nodes

can effectively transform the high-cost graph matching to an

easy-to-compute distance calculation between vectors.

In our approach, the applied graph embedding technique

should satisfy two requirements. First, given that new malware

samples are constantly being discovered, the graph embedding

algorithm should work with the input of only one graph per

time rather than a graph set (see details in Section VI-B). In

this way, the trained model does not need retraining process

for the new coming samples. Second, the latent representation

of nodes should not depend on the node or edge attribute,

especially the node labels (i.e., method names) that can be

easily changed by obfuscation techniques. Consider integrating

the performance and scalability, we use struc2vec [34] as our

default graph embedding technique.

Given a subgraph sgt = {Vt, Et}, after applying struc2vec,

we use Usgt ∈ �
|Vt|×d to denote the embedding result. Note

that sgt is regarded as an undirected graph here. For each node

v in Vt, it will learn a d dimensional feature vector uv . The

learned feature vectors enable the nodes with similar structural

roles to be embedded in the near points in Euclidean space.

Fig. 3: An example of an undirected graph that contains 11 nodes and 11
edges, where node 4 and node 8 are structurally similar since both of their
degrees are 4.

Fig. 4: Visualization of the embedding results of the same graph after twice
applying of struc2vec with the same arguments.

Fig. 3 presents an example of an undirected graph that

contains 11 nodes and 11 edges. The embedding results of the

example graph are illustrated in Fig. 4, where the dimension

argument is set as 2 for visualization here. As can be seen

from the two figures, the learned feature vectors of the same

nodes are quite different due to the random walk strategy used

in struc2vec. Thus, it is not effective to directly apply the

embedding technique in our work.

However, we observe that even the vectors of the same

nodes are different, the distance relationships between the

nodes are well remained. For example, node 4 and node 8 are

structurally similar and the distances between them in the two

figures are nearly the same while their locations are different.

2) SRA Generation: Inspired by the above observation

found from the embedding result, we leverage the similarity

relationships between the structural roles of identified node

pairs (e.g., node 4 and node 8) to represent the structural

feature of a subgraph. However, it is impossible to map

the user-defined method nodes between two subgraphs since

their names can be changed by the obfuscation techniques.

Thus, we focus on the sensitive API call nodes that cannot

be easily changed. Furthermore, the sensitive API calls are

generally invoked by malware samples to perform malicious

activities, which could provide useful information for the

malware similarity detection [19].

To obtain the set of sensitive API calls, we rely on the

work of SuSi [39], which provides a list of source API

calls (e.g., getLine1Number() that returns the phone

number of the user) and a list of sink API calls (e.g.,

sendTextMessage() that sends short messages). Finally,

we use SA to denote the set of 9,730 sensitive API calls.

According to the constructed SA, we generate the SRA,

representing the similarity relationships between the structural

roles of sensitive API call nodes for each given subgraph. In

detail, SRAt of subgraph sgt is calculated with two steps.

First, a subgraph sgt contains a set of sensitive API call

nodes, which is denoted as SAt ⊆ SA. Thus, a set of sensitive

API node pairs {(v, u)|v, u ∈ SAt} is obtained if the subgraph

sgt contains at least two sensitive API call nodes.

Second, on the basis of the learned low-dimensional vector
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Fig. 5: An example of the similarity calculation of two SRAs generated from
sg1 and sg2.

representations of sensitive API call nodes using struc2vec, let

ht(v, u) be the similarity relationship between the structural

roles of node v and node u, and it is calculated with the

standard cosine similarity metric as:

ht(v, u) = cos(uv,uu) =
uv · uu

‖uv‖‖uu‖
(3)

where uv and uu denote the vector representations of node

v and node u, respectively. Furthermore, ht(v, u) = ht(u, v).
In our work, we rank the sensitive API calls in a dictionary

ordered method. Thus, for two sensitive API call nodes v and

u, ht(v, u) is stored only if the dictionary order index of v is

less than that of u, or ht(u, v) is stored.

Finally, SRAt is obtained as:

SRAt = {ht(v, u)|v, u ∈ SAt and v �= u}. (4)

Thus, |SRAt| =
|SAt|·(|SAt|−1)

2 , where |SAt| is consider-

ably less than the subgraph’s node number.

3) SRA Similarity Calculation: After generating SRA for

each subgraph, we are able to transform the high-cost graph

matching between subgraphs into the similarity calculation

between SRAs. There are two intuitions for the similarity

calculation between SRAs and they are listed as below:

• If two SRAs share less common sensitive API call nodes,

the functionalities of their corresponding classes would be

less similar.

• If the common sensitive API call nodes of two SRAs

present less similar structural roles between each other,

their invocation patterns as well as the functionalities of

their corresponding classes would be less similar.

On the basis of the above two intuitions, the similarity of

two given SRAs generated from sg1 and sg2, denoted as

sim(SRA1, SRA2), is obtained with Eq. (5).

sim(SRA1, SRA2) =

∑
vi∈SA1∩SA2

sim(sr1(vi), sr2(vi))

|SA1 ∪ SA2|
(5)

where sr1(vi) and sr2(vi) are represented as two vectors

and they denote the similarity relationships between node vi
with other sensitive API call nodes in subgraphs sg1 and sg2,

respectively. To obtain sr1(vi) and sr2(vi), for convenience,

we first construct two distance matrices Dt(t = 1, 2) for two

subgraphs as Eq. (6). Then srt(vi) is the ith row vector of the

constructed matrices as Eq. (7).

Dt[i, j] =

{
ht(vi, vj) vi, vj ∈ SA1 ∩ SA2, i �= j
0 i = j

(6)

srt(vi) = Dt[i, :] (7)

sim(sr1(vi), sr2(vi))) =
1

1 + ‖sr1(vi)− sr2(vi)‖2
(8)

Fig. 5 presents an example of the similarity calculation of

two SRAs generated from sg1 and sg2. Note that only parts of

the subgraphs are shown, the other parts located in rectangles

are quite different. The two subgraphs have three common

sensitive API call nodes (i.e., red nodes v1, v2, and v3).

For subgraph sg1, h1(v1, v2) = 0.4 and h1(v1, v3) = 0.45.

For subgraph sg2, h2(v1, v2) = h2(v1, v3) = 0.8. Therefore,

sim(sr1(v1), sr2(v1))) = sim(< 0.4, 0.45 >,< 0.8, 0.8 >).
Note that the cosine metric result of the two vectors is 0.998.

However, the high similarity calculated with cosine metric

cannot depict the different sensitive API invocation patterns

here. Thus, we apply the Euclidean metric with Eq. (8) rather

than the cosine metric. The Euclidean metric result is 0.653,

considerably less than the result of cosine metric.

C. Familial Clustering

1) MLN Construction: After the feature extraction stage,

given two malware samples, we are able to capture their

similarity relationship based on their similar SRAs. To

perform familial analysis using unsupervised learning, we aim

to construct an MLN, where each node denotes a malware

sample, and each edge between two samples denotes that

there exist similar SRAs between them. Therefore, the MLN

can depict the similarity relationships among all the malware

samples to be analyzed.

Algorithm 1 lists the steps of constructing the MLN with the

input of malware set M and two threshold values, θ and ε. θ

denotes the similarity threshold value between SRAs. In other

words, if the similarity of two SRAs calculated with Eqs. (5-

8) is no less than θ, they are regarded as the same, indicating

that their corresponding classes share similar functionalities. ε

denotes the threshold value of adding edges between sample

nodes. If the number of same SRAs shared by two samples is

no less than ε, then an edge is added between the two samples.

In Algorithm 1, after the preprocessing of each sample in M

(lines 2-3), a set of SRAs, denoted as SRASet, is constructed

(lines 4-7). Then each sample is added to the MLN as a node

(line 8). After that, for each sample-pair in M , the number

of same SRAs between them is calculated and represented

as k (lines 11-18). An edge with weight k is added for the

sample-pair if there exist no less than ε same SRAs between

them (lines 19-21).

2) Community Detection: To group the malware samples

into clusters on the basis of the constructed MLN, community

detection algorithms are effective to determine whether the

MLN has community structures if the nodes can be easily

grouped into sets of nodes, such that each set of nodes is

internally densely connected. As a result, the malware samples

grouped in the same cluster could be regarded as belonging

to the same malware family. For the new samples that are

constantly being discovered, they are placed into the clusters

that have connections with them by calculating the similarity

relationships with existing samples.

Fig. 6 presents an example of community detection result

of MLN for fifteen malware samples in three families, i.e.,

geinimi, droidkungfu, and adrd. It is obvious that the
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Algorithm 1 Construction of MLN

Input: M // M denotes the set of malware samples to be analyzed.

θ // θ denotes the similarity threshold value between SRAs.

ε // ε denotes the threshold value of adding edges between nodes.

Output: MLN = {M,L}
1: for each malware sample mi in M do

2: SGmi
= Fdiv(Gmi

)
3: RemoveNoise(SGmi

)
4: for each sgt in SGmi

do

5: SRAt = GenerateSRA(sgt)
6: end for

7: SRASetmi
= {SRAt|1 ≤ t ≤ T}

8: MLN.addNode(mi)
9: end for

10: for each sample-pair (mi,mj) in M do

11: k = 0
12: for each SRAt in SRASetmi

do

13: for each SRAt′ in SRASetmj
do

14: if sim(SRAt, SRAt′ ) ≥ θ then

15: k = k + 1
16: end if

17: end for

18: end for

19: if k ≥ ε then

20: MLN.addEdge(mi,mj , k) // k denotes the edge weight.

21: end if

22: end for

23: return MLN

Fig. 6: An example of community detection result of MLN for fifteen malware
samples in three families.

constructed MLN can be divided into three clusters. In each

cluster, the samples are connected with each other, indicating

that the samples within the same cluster share similar

malicious components. On the basis of the clustering results,

our approach can effectively help security analysts focus on

the commonalities among malware samples within the same

cluster, and potentially isolate the malicious behaviors of

malware samples from different clusters.

IV. EVALUATION

We use three datasets with real malware samples and

six metrics to carefully evaluate GefDroid and answer five

research questions:

RQ 1: Does GefDroid outperform the baseline approaches

in term of accuracy? (Section IV-B1)

RQ 2: Can GefDroid handle new malware samples without

retraining the model? (Section IV-B2)

RQ 3: Can GefDroid process a great deal of samples with

low run-time overhead? (Section IV-C1)

RQ 4: Does GefDroid outperform the baseline approaches

in term of efficiency? (Section IV-C2)

RQ 5: To what extent is GefDroid resilient to obfuscation

techniques? (Section IV-D)

RQ 1-2 examine the accuracy of GefDroid while RQ 3-

4 investigate the efficiency. RQ 5 evaluates the resilience of

GefDroid to code obfuscation.

TABLE I: Descriptions of three used datasets

Dataset #Family (Q) #Malware (K) Max. Min. Avg.

dataset-I [3] 49 1,260 15.4MB 12KB 1.3MB

dataset-II [40] 179 5,560 24.8MB 5KB 1.3MB

dataset-III [41] 36 8,407 36.2MB 12KB 2MB

A. Study Setup

1) Datasets: We evaluate GefDroid on three ground truth

datasets provided by Genome project [3], Drebin [40], and

Fan et al. [41]. For convenience, they are named as dataset-

I, dataset-II, and dataset-III. Their descriptions are listed in

TABLE I, where columns 2-3 list the number of families (Q)

and the number of malware samples (K). Different datasets

have different distributions of malware samples. Columns 4-6

lists the maximum, minimum, and average size of malware

samples. Note that each sample in these datasets has been

attached to a family label given by experts.

2) Metrics: Six metrics are used to measure the clustering

performance. They are normalized mutual information (N-

MI) [42], adjusted rand index (ARI) [43], Fowlkes-Mallows

index (FMI) [44], Homogeneity [45], Completeness [45], and

V-measure [45]. NMI, ARI, and FMI are three widely-used

metrics that measure the agreement between the clustering

result and the ground truth dataset. Homogeneity measures the

extent of how each generated cluster contains only samples

of a single family. Completeness measures the extent of

how all samples of each family are assigned to the same

cluster. V-measure is the harmonic mean of homogeneity and

completeness. Except for the ARI, the values of the other five

metrics range from 0 to 1, where a higher value indicates

a better agreement between the predicted clusterings and the

true clusterings. The value of ARI ranges from -1 to 1, where

random labelings have an ARI value close to 0.0. For all the

six metrics, 1.0 stands for a perfect match with the ground

truth dataset. Recall the example of community detection result

illustrated in Fig. 6, all the six metrics are 1.0.

3) Community detection algorithm: We apply four widely-

used community detection algorithms to the MLNs constructed

on the three datasets. These algorithms include:

• Infomap, which detects community structures of a net-

work using the approach proposed by Rosvall et al. [46].

• Fast greedy, which is based on the greedy optimization

of modularity [47], a metric to measure the quality or

significance of a community structure.

• Label propagation, which is a fast partitioning algorithm

proposed by Raghavan et al. [48].

• Multilevel, which is a layered and bottom-up community

detection algorithm proposed by Blondel et al. [49].

Due to the page limitation, we cannot present all the

clustering performance with the four algorithms on the three

datasets. According to the performance, the infomap algorithm

achieves the best clustering performance among these four

algorithms. The average NMI value of infomap on the three

datasets is 0.795, while those of the other three algorithms are

0.668, 0.762, and 0.728. In addition, infomap also performs

best in terms of the other five metrics. Therefore, in our latter

experiments, we select infomap as our default community
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TABLE II: Clustering performance of GefDroid and baseline approaches with infomap algorithm on three datasets.

Dataset Baseline Approaches NMI ARI FMI Homogeneity Completeness V-measure #Cluster

dataset-I

(Q=49, K=1,260)

Permission 0.676 0.447 0.585 0.559 0.818 0.664 34

API 0.770 0.564 0.655 0.718 0.826 0.768 68

FalDroid 0.812 0.686 0.720 0.860 0.767 0.811 74

GroupDroid 0.798 0.583 0.630 0.834 0.765 0.798 70

GefDroid (w/o NR) 0.703 0.433 0.576 0.604 0.820 0.695 53

GefDroid 0.883 0.870 0.886 0.892 0.876 0.883 74

dataset-II

(Q=179, K=5,560)

Permission 0.543 0.261 0.414 0.416 0.707 0.524 83

API 0.718 0.456 0.500 0.773 0.666 0.716 392

FalDroid 0.757 0.502 0.555 0.826 0.694 0.754 232

GroupDroid 0.743 0.404 0.476 0.860 0.642 0.735 245

GefDroid (w/o NR) 0.711 0.371 0.418 0.792 0.639 0.707 375

GefDroid 0.793 0.534 0.606 0.924 0.681 0.784 471

dataset-III

(Q=36, K=8,407)

Permission 0.507 0.176 0.388 0.351 0.731 0.474 42

API 0.657 0.361 0.414 0.680 0.635 0.657 160

FalDroid 0.672 0.488 0.530 0.711 0.634 0.671 75

GroupDroid 0.693 0.365 0.426 0.674 0.712 0.692 59

GefDroid (w/o NR) 0.642 0.256 0.361 0.628 0.656 0.642 204

GefDroid 0.707 0.509 0.559 0.832 0.600 0.697 685

detection algorithm due to its superior performance.

4) Parameters: There are two parameters that play im-

portant roles in our approach, i.e., θ controls the similarity

threshold value between SRAs; ε controls the threshold value

of adding edges between sample nodes. To select the proper

θ and ε, we vary the values of θ as {0.6, 0.65, 0.7, 0.75,

0.8, 0.85, 0.9, 0.95} and vary the values of ε as {1, 2,

3, 4, 5} when conducting the experiments on all the three

used datasets. According to the clustering performance with

different parameters, we select the default values of θ and ε

as 0.75 and 1, respectively.

We conduct the experiments on a quad-core 3.20 GHz PC

running Ubuntu 15.10(64 bit) with 32 GB RAM and 1 TB

hard disk.

B. Accuracy of GefDroid

1) RQ1: Does GefDroid outperform the baseline approach-

es in term of accuracy?: We compare the accuracy of

GefDroid with four baseline approaches that are briefly

introduced as below:

• Wang et al. proposed an approach for malware detection

based on the requested permissions, which are security-

aware features that restrict the access of apps to the core

facilities of devices [10].

• Aafer et al. proposed an approach for malware detection

based on API calls, which are more fine-grained features

than permissions since each permission governs several

API calls [11].

• Fan et al. proposed FalDroid, which performs familial

classification based on the generated fregraphs that denote

the common behaviors of malware samples within the

same families [12].

• Marastoni et al. proposed GroupDroid, which uses 3D-

CFG centroids [6] as features to measure the similarities

between malware samples and perform grouping [13].

Among these approaches, GroupDroid [13] performs a

clustering task like GefDroid does, while the other three

approaches [10]–[12] perform a classification task and they

suffer two main limitations. First, they require a training

dataset with family labels assigned by experts, which is not

easy to obtain. Second, they can only identify the families that

are only provided in the training dataset. Thus, for Android

familial analysis, it is more practical to perform a clustering

task as we do rather than performing a classification task.

To have a fair comparison of clustering performance with

the approaches that perform a classification task [10]–[12],

we construct different MLNs for such approaches based on

their proposed features, e.g., fregraphs, permissions, and API

calls. Then the infomap algorithm is applied on their MLNs

to perform a clustering task. For GroupDroid [13], we re-

implement it and perform a clustering task based on the

extracted 3D-CFG centroids. In addition, we use GefDroid

(w/o NR) to denote our approach without the preprocessing

of noise removal, in order to evaluate whether the third-party

or advertisement libraries affect the clustering performance.

The comparison results are listed in TABLE II, where the

term #Cluster denotes the number of generated clusters. We

can draw the following four conclusions from the results:

(i) Except for the completeness metric, GefDroid performs

best among these approaches in terms of the other five

metrics.

(ii) GefDroid generates the most clusters. The highest

homogeneity values and the most clusters indicate that

GefDroid can well isolate the malicious behaviors of

malware samples from different families.

(iii) In general, the string-based features (i.e., permissions

and API calls) perform worse than the graph-based

features. The main reason is that they cannot well depict

the program semantic meanings, thus insufficient to

mine the common malicious components of malware

samples within the same families.

(iv) The preprocessing of noise removal significantly im-

proves the clustering performance, indicating that the

widely used third-party or advertisement libraries would

introduce noise edges into the MLNs.

Then, we investigate the clustering results of data-III

that has only 36 families but 685 generated clusters. The

clustering results are listed in TABLE III, where RP denotes

the reduced percentage of malware samples in which its

inspection can be deferred because of our clustering. RP
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TABLE III: Clustering result of GefDroid on dataset-III, where RP denotes
the reduced percentage of malware samples in which its inspection can be
deferred because of our clustering.

Family #Sample #Cluster RP Family #Sample #Cluster RP

adwo 338 105 0.689 hongtoutou 46 4 0.913

airpush 76 34 0.552 iconosys 153 7 0.954

anserver 53 1 0.981 imlog 41 4 0.902

basebridge 303 35 0.884 jsmshider 22 3 0.864

boqx 49 25 0.490 kmin 248 4 0.984

boxer 95 10 0.894 kuguo 358 93 0.740

clicker 37 19 0.486 lovetrap 19 1 0.947

dowgin 851 64 0.925 mobiletx 81 2 0.975

ddlight 101 14 0.861 pjapps 82 4 0.951

droidkungfu 736 39 0.947 plankton 896 3 0.997

droidsheep 14 1 0.929 smskey 111 38 0.658

fakeangry 16 6 0.625 smsreg 149 25 0.832

fakedoc 147 2 0.986 steek 20 1 0.950

fakeinst 1,504 61 0.959 utchi 285 1 0.996

fakeplay 43 13 0.698 waps 771 202 0.738

geinimi 105 1 0.990 youmi 113 62 0.451

gingermaster 385 12 0.969 yzhc 49 1 0.980

golddream 80 6 0.925 zitmo 30 4 0.867

is calculated as RP = 1 − #Cluster
#Sample

. For example, the

family steek contains 20 samples, and only one cluster is

generated with our clustering approach. Therefore, its RP is

1 − 1
20 = 0.950. In other words, the analyst only need to

inspect one sample from the generated cluster because these

samples share similar malicious components. According to the

result, the average value of RP is 0.847, indicating that our

approach can effectively reduce the analytical workload of

the analyst. However, there are still some families whose RPs

are lower than 0.5 (e.g., 0.451 for family youmi), indicating

that it still requires a lot time for the analyst to manually

review. We manually inspect the samples in family youmi,

which are adware that just display annoying, and misleading

advertisement. We find that 16 samples do not contain any

SRA since their malicious advertisements are removing in

our preprocessing stage. Therefore these samples have no

connection with others. The detection of whether the contained

advertisements are annoying or misleading is still a challenge

for existing works, and we leave this as our future work.

Answer to RQ 1: GefDroid can achieve high agreements

between the clustering results and the ground truth datasets,

which outperforms baseline approaches.

2) RQ2: Can GefDroid handle new malware samples

without retraining the model?: We randomly select 100

samples from each dataset and regard them as new samples.

Then, we calculate their similarity relationships with existing

samples in the MLN, and use three terms to evalaute the

performance.

• True-Link Rate: the percent of new samples that have

links with the samples that belong to the same families.

• False-Link Rate: the percent of new samples that have and

only have links with the samples that belong to different

families.

• No-Link Rate: the percent of new samples that have no

links with existing samples.

We repeat this experiment 100 times on the three datasets.

The average results listed in TABLE IV indicate that GefDroid

can effectively link the new coming samples with their variants

in the MLN. Moreover, we find that 0.52% of new samples

actually belong to the families that contain only one sample in

TABLE IV: Performance of detecting new coming malware samples.

Dataset True-Link Rate False-Link Rate No-Link Rate

dataset-I 94.91% 1.89% 3.20%

dataset-II 94.51% 1.21% 4.28%

dataset-III 92.80% 1.09% 6.11%

Fig. 7: CDFs for the run-time overhead of the preprocessing stage (left) and
the feature extraction stage (right) on dataset-III.

TABLE V: Run-time overheads of MLN construction and community
detection on three datasets.

Dataset T #SRA pairs MLN Construction Community Detection

dataset-I 3.1 7.46 ∗ 106 20s 2s

dataset-II 3.2 1.58 ∗ 108 131s 11s

dataset-III 5.1 9.09 ∗ 108 750s 45s

the datasets, thus causing their no link with existing samples.

Answer to RQ 2: GefDroid can effectively link the new

samples with their variants in the MLN and identify the

samples that belong to new families.

C. Efficiency of GefDroid

1) RQ3: How is the overhead of GefDroid for handling a

great deal of samples?: We evaluate the run-time overhead of

GefDroid for its three main stages that are listed as below:

• Preprocessing: All the given samples are disassembled

and a set of subgraphs for each sample are constructed.

• Feature Extraction: For each subgraph of a sample, its

nodes are encoded into low-dimensional vectors with

struc2vec. Then, an SRA is generated to represent the

structural feature of the subgraph.

• Familial Clustering: An MLN is constructed based on

the similarity calculation of SRAs. Then, the infomap

algorithm is applied on the MLN for malware clustering.

Fig. 7 presents the cumulative distribution function (CDF)

for the run-time overhead of the preprocessing procedure (left)

and the feature extraction procedure (right) on dataset-III.

For the preprocessing stage, only 2.1s is needed on average.

Moreover, more than 98% of samples require less than 10s.

For the feature extraction stage, 6.5s is needed on average.

Furthermore, only about 6.1% of samples require more than

30s. The cost of feature extraction mainly depends on the

size of the subgraphs that are embedded. The used embedding

algorithm struc2vec [34] scales super-linearly but closer to

linear. It is worth noting that the preprocessing and the

feature extraction stages could be conducted on several PCs

in parallel, thus further reducing the total overhead.

For the stage of familial clustering, an MLN is first

constructed by calculating the similarities between SRAs.

Thus, the calculation complexity of the SRA pairs is about

O(K∗(K−1)
2 ∗T ∗T ), where K and T denote the total number

of samples and the average number of SRAs per sample
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Fig. 8: Comparison result of the run-time overheads.

has, respectively. TABLE V lists the run-time overheads of

MLN construction and community detection on three datasets.

Even for the biggest dataset-III, the similarity calculation of

9.09 ∗ 108 pair of SRAs is accomplished in only 750s. The

cost for the community detection is considerably less than

that of the MLN construction. Furthermore, for a new coming

sample, it only needs 0.2s to calculate the similarities with

existing samples.

Answer to RQ 3: GefDroid only takes around 8.6s to analyze

a sample on average, and thus it can handle a large scale of

samples efficiently.

2) RQ 4: Does GefDroid outperform the baseline ap-

proaches in term of efficiency?: We compare the overhead

of GefDroid and that of the baseline approaches. For the

permissions- and API-calls-based approaches, their clustering

performance is considerably worse than GefDroid. Moreover,

compared with the graph-based features, the permissions- and

API-calls-based features cannot provide enough explanations

to the relationships between malware samples within the

same clusters. Hence, we focus on the efficiency comparison

between GefDroid and the two graph-based approaches, i.e.,

FalDroid and GroupDroid. More precisely, we first randomly

select 1,000 malware samples. Then, a set of subgraphs are

generated for each sample in the three approaches. After

that, FalDroid adopts a weighted-sensitive-API-calls-based

graph matching approach to calculate the graph similarities,

which has been proved to be faster than the graph edit

distance algorithm. For GroupDroid, a 3D-CFG centroid

represented as a four-dimensional vector is calculated for each

subgraph. In GefDroid, an SRA is generated to represent

each subgraph. In summary, the similarity detection between

samples of FalDroid is based on the graph matching algorithm

while GroupDroid and GefDroid rely on similarity calculation

between vectors.

Fig. 8 use the blue line, black line, and red line denote the

increase of total run-time overhead of FalDroid, GroupDroid,

and GefDroid, respectively. We can see that the blue line grows

exponentially while the black line and the red line show linear

growths. About 19s is required for GroupDroid to construct

the 3D-CFGs and calculate the centroid, which is twice as

the time GefDroid needs. For FalDroid, when the number of

samples is lower than 400, it shows higher efficiency than

GefDroid by directly applying the graph matching approach.

However, with the increase in the number of samples, the cost

of FalDroid is considerably higher than GefDroid.

Answer to RQ 4: GefDroid only requires linear run-time

overhead in terms of the number of samples, and thus is

considerably faster than the previous work.

D. Resilience of GefDroid

1) RQ 5: To what extent is GefDroid resilient to obfuscation

techniques?: To answer RQ 5, we initially leverage different

kinds of obfuscation techniques to produce the variants of our

samples. Then we calculate the similarities between the SRAs

generated by the original and obfuscated samples.

Given that SRA is proposed to depict the similarity rela-

tionships between structural roles of sensitive API call nodes

in a graph, it is resilient to typical obfuscation techniques [50]

such as function renaming, instruction substitution, and string

encryption, which cannot change the structure of FCG.

However, there are several advanced obfuscation techniques

that can slightly change the FCG structure, including the

control flow obfuscation and the reflection technique.

To evaluate the resilience of GefDroid to the control flow

obfuscation, which changes the FCG structure by inserting

or deleting useless method nodes, we apply GefDroid to

ten samples obfuscated by the Android obfuscator called

DashO [51]. After the similarity calculation between the

SRAs generated by the original and obfuscated samples, the

results show that even the FCG structures are slightly changed

with several nodes, their similarities are still higher than our

threshold value θ, which is set as 0.75 in our approach. For

the reflection technique which might hide calling edges of

FCG, we leverage DroidRA [52], an open-source tool, to detect

reflection methods and add the missing edges. The experiment

shows that on average only two edges containing a sensitive

API call node are added into the FCG for each app, which

barely affects the accuracy of GefDroid.

In addition to the above obfuscation techniques, encryption

packers, such as Bangcle [53] and Baidu [54], are the most

popular obfuscation tools now. They can hide the actual

Dex code, thus making the disassembled tools unable to get

the dalvik code. In our approach, we use the unpacker tool

PackerGrind [55] to recover the actual Dex files.

Answer to RQ 5: GefDroid is resilient to typical obfuscation

techniques and can deal with advanced packing techniques by

leveraging existing tools.

V. THREATS TO VALIDITY

A. Threats to Internal Validity

Native code. In our approach, we limit our analysis to the

FCG model constructed based on the dalvik code. We do

not analyze native code. Thus, our approach would miss the

malicious behaviors implemented in native code. However,

there are many binary analysis frameworks, such as Angr [56],

that can help us address this limitation by constructing the

FCG of the native code. Then, we could apply our approach to

conducting similarity detection of such FCGs. We will explore

this approach in future work.

Sensitive API calls. Our detection of sensitive API calls relies

on the set provided by SuSi [39], which now, four years

later, might be incomplete or outdated. Missing or incorrect

779



sensitive API calls contained in SA would make GefDroid

miss or misidentify the common malicious behaviors between

malware samples within the same families. Furthermore, since

the sensitive API calls are extracted statically in GefDroid, the

ones that are never executed by the malware samples would

introduce noises when detecting the similarities between

samples. In future work, combining the dynamic analysis [57]

with the static analysis is a promising way to reduce the side-

effects caused by the dead code that will never be executed.

B. Threats to External Validity

Third-party libraries. To remove the third-party and advise-

ment libraries, we extend the widely-used library list by adding

the class names of 5,000 benign apps. Even the list works

well on our datasets, it is unclear how does the list performs

when applying GefDroid on other datasets. In future work, we

plan to construct bigger datasets that contain recent malware

samples and evaluate the performance of GefDroid on them.

Multi-label malware. GefDroid can well handle the samples

in our three used datasets from which each sample belongs

to exactly one malware family. However, it might fail when

dealing with the multi-label malware samples that contain

code from multiple malware families. The multi-label malware

samples belong to the overlapping region in the constructed

MLN, which might be handled by the overlapping community

detection algorithms [58]. We leave the detection of multi-label

samples as our future work.

VI. RELATED WORK

A. Malware Familial Analysis

There is a large body of research devoted to the fa-

milial analysis of Android malware. Deshotels et al. [5]

proposed DroidLegacy, which partitions the app code into

loosely coupled modules and identifies the malicious module

of each piggybacked malware family. Suarez et al. [59]

proposed Dendroid, which automatically classifies malware

and analyzes families on the basis of code structures. Zhang

et al. [29] proposed DroidSIFT, which constructs family

features on the basis of the API dependency graphs. Feng

et al. [60] proposed Astroid, which automatically synthesizes

a maximally suspicious common subgraph of each malware

family as a signature to perform the familial analysis.

Most of the above approaches work with supervised

learning. They require a set of known malware samples labeled

by experts to be used as training samples. Thus, they can only

classify the malware samples that belong to known families in

training dataset. Compared with these approaches, GefDroid

works with unsupervised learning that does not need any

labeled samples. Therefore, our approach is able to avoid

the model retraining, and detect the new coming samples by

calculating their connections with existing samples in MLN.

B. Graph Embedding

The embedding techniques based on representing graphs in

vector spaces, while preserving their properties, have become

widely popular. There are two types of representation learning.

The first is to encode nodes as low-dimensional vectors

that summarize their structural roles in graphs. Perozzi et

al. [32] proposed DeepWalk which first uses the random walks

to generate node sequence as its context. Then Grover and

Leskovec [33] improved the DeepWalk model by proposing

node2vec that uses second-order random walks to generate

the node sequence. Ribeiro et al. [34] proposed struc2vec,

which uses a hierarchy to measure node similarity at different

scales, and constructs a multilayer graph to encode structural

similarities and generate the structural context for nodes.

However, these approaches cannot be directly applied to our

work since their embedding results of the same graph are not

in a consensus due to the using of random walks. Thus we

propose SRA to represent the graph feature for similarity

calculation.

The second is to encode a graph as low-dimensional vectors

instead of a node. Dai et al. [35] proposed structure2vec, which

is based on the idea of embedding latent variable models

into feature spaces and learning such feature spaces using

discriminative information. Narayanan et al. [61] proposed

graph2vec, which is also based on the skip-gram model for

learning embedding similar to node2vec. The difference is that

it views an entire graph as a document and the subgraphs

around each node in the graph as words that compose the

document. Even such approaches can learn representations

for graphs, they require a graph set as input and need model

retraining to deal with the new coming samples.

VII. CONCLUSION

We propose SRA, a novel feature to represent the similarity

relationships between the structural roles of sensitive API

call nodes in a graph. By doing so, we transform the

high-cost graph matching into an easy-to-compute similarity

calculation between vectors. Moreover, we design and develop

GefDroid, a new system for familial analysis of Android

malware by using unsupervised learning and constructing

MLN based on SRAs. Our extensive evaluation results show

that GefDroid outperforms the state-of-the-art approaches in

terms of accuracy and efficiency.
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