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Abstract—The rapid growth of Android malware poses great
challenges to anti-malware systems because the sheer number
of malware samples overwhelm malware analysis systems. A
promising approach for speeding up malware analysis is to
classify malware samples into families so that the common
features in malwares belonging to the same family can be
exploited for malware detection and inspection. However, the
accuracy of existing classification solutions is limited because
of two reasons. First, since the majority of Android malware
is constructed by inserting malicious components into popular
apps, the malware’s legitimate part may misguide the classifica-
tion algorithms. Second, the polymorphic variants of Android
malware could evade the detection by employing transfor-
mation attacks. In this paper, we propose a novel approach
that constructs frequent subgraph (fregraph) to represent the
common behaviors of malwares in the same family for familial
classification of Android malware. Moreover, we propose and
develop FalDroid, an automatic system for classifying Android
malware according to fregraph, and apply it to 6,565 malware
samples from 30 families. The experimental results show that
FalDroid can correctly classify 94.5% malwares into their
families using around 4.4s per app.

Keywords-Android malware; familial classification; frequent
subgraph; sensitive API; clustering;

I. INTRODUCTION

Being the most popular mobile operating system, Android
has occupied 82.8% market share in the second quarter of
2015'. Meanwhile, Android has become the major target of
97% of mobile malware?. A recent security report shows that
on average 51,342 new malware samples were captured per
day in 2015%. Since it takes time to analyze each malware
sample [1], [2], the sheer number of malware samples
overwhelm the malware analysis systems.

Since the majority of new malware samples are the
polymorphic variants of known malware [3], [4], we can
classify them into various families and then extract the
common features of each family to speed up the malware
analysis. However, it is challenging to accomplish the famil-
ial classification of Android malware because of two reasons.

First, it is non-trivial to accurately separate the malicious
components and the legitimate part in the majority of
Android malware that are repackaged popular apps [5], [6].

Ihttp://www.idc.com/prodserv/smartphone-os-market-share.jsp
Zhttp://goo.gl/MYDBKC
3http://2t.360.cn/1101061855.php?dtid=1101061451&did=1101593997
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Zhou et al. [3] found that 86% Android malware samples
are repackaged ones produced by injecting malicious com-
ponents into legitimate apps. Since the injected malicious
components are hidden within the functionalities of popular
apps and they usually constitute only a small portion of the
repackaged app. It is difficult for existing features, such as
system calls [7] and sensitive path [8], to differentiate the
legitimate part and the malicious components.

Second, the polymorphic variants of Android malware in
the same family conduct the same malicious activities with
different implementations. Therefore, existing classification
solutions [9], [10] that seek for an exact match for a given
specification can be easily evaded by such malware. For
example, Fig.1 illustrates the different implementations of
the same functionality (i.e., get the number of voice mail) in
two malware samples. They belong to the same family called
geinimi, and such bot-like malware steals personal informa-
tion and sends it to a remote server. There are three major
differences (highlighted in red) in these two implementation-
s. First, the structure of class names is different. Second, the
two functions’ arguments are different. One argument starts
with a service, one of the four basic components of Android
framework, whereas the other one starts with an object of
the class rally/e. Third, the former method has two more
statements (including one more invocation) than the latter.

To tackle the above two challenges, in this paper, we pro-
pose a novel approach based on frequent subgraph (fregraph)
by exploiting two observations. First, Android malware
usually invokes sensitive APIs that operate on sensitive data
to perform malicious activities. Second, malware and its
variants in the same family invoke sensitive APIs following
similar patterns even if their codes may be obfuscated.

Exploiting the two observations, we first distill program
semantics into a function call graph representation and
assign different weights to different sensitive APIs with a
TF-IDF-like approach.

Then, we propose two key techniques to solve the
challenges (see Section II-B for details). 1) We propose
a clustering-based approach to extract common malicious
behaviors in the same family. By doing so, we can exclude
the legitimate part in malware from familial classification.
2) We propose a weighted sensitive APIs-based approach
to calculate the similarity between graphs which can detect



.class public final Lcom/geinimi/c/f;

.method public constructor <init> (Lcom/geinimi/Adservice;)V
invoke-virtual {p0}, Landroid/telephony/
TelephonyManager;>getVoiceMailNumber()Ljava/lang/String;
move-result-object v0

sput-object v0, Lcom/geinimi/c/f;->t:Ljava/lang/String;
new-instance v0, Landroid/os/Build;

invoke-direct {v0}, Landroid/os/Build;-><init>()V

sget-object v0, Landroid/os/Build;->MODEL :Ljava/lang/String;

.class public final Lcom/xlabtech/MonsterTruckRally/rally/e/k;

.method public constructor <init> (Lcom/xlabtech/MonsterTruckRally/rally/e;)V
invoke-virtual {p0}, Landroid/telephony/
TelephonyManager;>getVoiceMailNumber()Ljava/lang/String;
move-result-object v0

sput-object v0, Lcom/xlabtech/MonsterTruckRally/rally/e/k;->v:Ljava/lang/
String;

sget-object v0, Landroid/os/Build;->MODEL:Ljava/lang/String;

Figure 1: Different implementations of the same functional-
ity in two malware samples in geinimi family.

homogeneous malicious behaviors while tolerating minor d-
ifferences of implementation. It is worth noting that sensitive
APIs constitute only a small portion of the whole Android
APIs and they cannot be easily obfuscated.

Finally, based on these two key techniques we construct
frequent subgraph (fregraph) to represent the common ma-
licious behavior of malwares in the same family. Moreover,
we propose and develop FalDroid, an automatic system for
classifying Android malware according to fregraph, in 7,400
lines of Java code and 900 lines of Python code. By applying
FalDroid to 6,565 malwares in 30 different families, we find
that FalDroid can correctly classify 94.5% malwares into
their families around 4.4s per app on average.

In summary, our major contributions include:

(i) We propose fregraph, a new feature for representing
common behaviors of malwares in the same family,
and employ it to conduct malware familial classifica-
tion.

(i) We propose a novel weighted sensitive APIs-based
graph matching approach, which can detect homoge-
neous malicious behaviors of malwares in the same
family while tolerating minor differences of imple-
mentation.

(iii)) We design and implement FalDroid, an automatic sys-

tem that can handle large scale of Android malwares

for familial classification with high accuracy.

We conduct extensive experiments to evaluate Fal-

Droid. The experimental results show that it can

achieve 94.5% accuracy and just needs around 4.4s

to process an app.

(iv)

The remainder of this paper is organized as follows.
Section II details the design of FalDroid and its algorithms.
Section III reports the experimental results. After discussing
the limitations and threats to validity in Section IV, we
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introduce the related work in Section V and conclude the
paper with future work in Section VI

II. METHODOLOGY

The overall architecture of FalDroid is shown in Fig.2,
which is comprised of three main stages.

In the Preprocessing stage, in order to differentiate the
importance of sensitive APIs to different families, each
sensitive API in different families is assigned with different
weights using a TF-IDF-like approach. Then, the program
semantics is distilled into a function call graph representa-
tion. After that, the graph is simplified into a sensitive API
related graph with the identified sensitive API nodes.

In the Fregraph Generation stage, the sensitive API re-
lated graph is first divided into a set of subgraphs with
community detection algorithm proposed by Rosvall et al.
[11]. The subgraph with sensitive APIs (sensitive subgraph)
that is used by most samples in one family is defined as the
frequent subgraph (fregraph) of the specific family.

In the Feature Construction stage, the fregraphs of all
known families are embedded into a feature space and a
classifier is generated with machine learning algorithm.

A. Preprocessing

Android apps are normally written in Java and compiled
to Dalvik code (DEX). All Java code is contained in the
classes.dex file. The compiled code and resources are pack-
aged as Android package (APK). With mature disassemble
tools such as apktool4, we are able to get the Dalvik code
from the APK.

As stated in the first observation, Android malware usually
invokes sensitive APIs that operate on sensitive data to per-
form malicious activities. Therefore, malwares in different
families with different malicious behaviors utilize sensitive
APIs in different ways.

To obtain the set of sensitive APIs, we rely on the work of
Rasthofer et al. [12]. They proposed SuSi, a novel machine-
learning guided approach for identifying Sources and Sinks
directly from any Android API. Sources are APIs that return
sensitive data such as getDeviceld() which returns the IMEI
of a phone, and Sinks are APIs that use sensitive data as
arguments such as sendTextMessage() which receives both
the message text and the phone number. There are 18,044
Sources and 8,278 Sinks in total.

1) Weight Assignment of Sensitive APIs: In order to
differentiate the importance of sensitive APIs, our approach
assigns weights for each sensitive API in different families.
To achieve this, 6,565 malware samples in 30 families are
collected from VirusShare® (see Section III-A for details).
Here we use three terms of a sensitive API s in family f to
help us understand its usages in different families.

“https://code.google.com/p/android-apktool/
Shttp://virusshare.com/
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Figure 2: The overall architecture of FalDroid
Table I: Six Sensitive APIs’ tn And Their Corresponding sn, sp And w In Three Families
sensitive AP tn geinimi(fn = 105) plankton(fn = 626) droidkungfu( fn = 725)
(6,565) sn sp w sn sp w sn sp w
getVoiceMailNumber() 138 105 1.000 1.677 19 0.033 0.055 0 0.000 0.000
getDeviceSoftwareVersion() 171 105 1.000 1.584 0 0.000 0.000 0 0.000 0.000
getDeviceld() 5,927 105 1.000 0.044 626 1.000 0.044 725 1.000 0.044
getLine ] Number() 3,903 105 1.000 0.226 334 0.536 0.121 667 0.920 0.208
sendTextMessage() 1,373 105 1.000 0.680 24 0.038 0.026 23 0.032 0.022
divideMessage() 302 6 0.057 0.076 2 0.003 0.004 4 0.006 0.008

o sn(s, f): number of samples that invoke the sensitive
API s in family f.

o sp(s, f): percent of samples that invoke the sensitive
API s in family f, sp(s, f) = S}’n(—‘z]f;), where fn(f)
denotes the number of samples in f.

o w(s, f): weight of sensitive API s in family f.

In addition, we use tn(s) to denote the number of samples
that invoke s in all families, it is obtained by tn(s) =
> opepsn(s, fi), where ' = {fj[1 < j < m,m = 30}
denotes the set of all families.

TABLE I lists six sensitive APIs’ tn and their correspond-
ing sn, sp and w in three different families, respectively.
There are two main observations we found from TABLE .

o The usages of different sensitive APIs in the same fam-
ily are quite different. For example, sendTextMessage()
is used by all the 105 samples in geinimi family while
divideMessage() is used by only 6 samples.

e There are some sensitive APIs that are used by most
malware samples. For example, getDeviceld() is used
by all the samples in the three families.

Based on the two observations, the weight of a sensitive
API in one family should be positively related with its
sp in the family, and be negatively related with its ¢n.
Utilizing the idea of TF-IDF [13]-[15] for reference: the
term frequency (TF) measures the number of sensitive API
s appears in family f and the inverse document frequency
(IDF) measures whether s is common or rare across all the
malware samples. The weight of sensitive API s in family
f is calculated as:

Z1§jgm fn(f) .

w(s, f) = sp(s, f) g tn(s)

&)
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As listed in TABLE I, by using Eq.(1) the weight of
sendTextMessage() is 0.680 in geinimi family while di-
videMessage() is only assigned with 0.076 since the sp of
sendTextMessage() is much higher than that of divideMes-
sage(). Moreover, getDeviceld() is used by all samples in the
three families, it is assigned with only 0.044. Intuitively, the
results show that the weight assignment of our approach can
well measure how important a sensitive API to one family.

2) Construction of Sensitive API Related Graph: Based
on the extracted callers and callees from the Dalvik code, we
distill an app’s program semantics into a function call graph
representation, which contains all possible executed traces,
as well as the structure information to depict app behaviors.
It is represented as G = (V, E).

e V = {v]1 < i < n}denotes the set of functions
invoked by a given app, and in which each v; € V
corresponds to the function name.

e E CV x V denotes the set of function calls, in which
edge (v;,v;) € E indicates that there exists one call
from the caller function v; to the callee function v; .

e Vs, C V denotes the set of sensitive APIs invoked by
the app.

In general, there are thousands of nodes in the whole
graph of a given app. Analyzing the whole graph is neither
effective (the malicious part is hidden behind the legitimate
part) nor efficient (too many nodes and edges to analyze).
Thus, excluding the nodes that have no path to sensitive n-
odes can effectively reduce the complexity of graph analysis.
We simplify the function call graph G into the sensitive API
Related Graph G’.

Definition 1: Sensitive API Related Graph (SARG) : it
is a subgraph of function call graph and in which all nodes



have directed path to sensitive API nodes.

The SARG G’ = (V’, E’) can be obtained with Eq.(2) and
Eq.(3), in which the function dis(v;, v;) returns the shortest
path length from node v; to node v;. In general, the size of
SARG is reduced by about 80% compared to the original
function call graph.

Vy = {v;]0 < dis(vj,v;) < n,v; € V,v; € V}
VI=V,UV,E =V xV)NE

2
A3)

B. Fregraph Generation

In this section, we introduce our two key techniques:
a clustering-based approach to extract common malicious
behaviors in the same family (see Section II-B1 and Section
II-B3 for details) and the sensitive APIs-based graph match-
ing approach to calculate similarity between subgraphs (see
Section I1-B2).

1) Community Detection: After the stage of preprocess-
ing, there is an observation that discovered from generated
SARGs of a family: even the big portion of the whole
SARGs are different in various apps, they have similar
subgraphs which constitute only a small portion of the
whole SARGs. Fig.3 presents two SARGs of two different
samples in geinimi family, in which the red nodes denote the
sensitive API nodes and the blue nodes denote the general
nodes. The red edge denotes that its callee function is a
sensitive API. The two SARGs contain 267 and 715 nodes,
respectively. The subgraphs marked in red circles are nearly
the same which implement similar behaviors and the other
parts are totally different. It is not efficient to mine the
similar subgraphs from the two whole SARGs since the
graph isomorphism problem is a NP complete problem. Thus
we divide the SARGS into a set of even smaller subgraphs
to help locate the similar ones and reduce the complexity of
graph similarity calculation.

Figure 3: Two SARGs of two malware samples in family
geinimi and three similar subgraphs marked in red circles

As introduced in [16], [17], one network feature that has
been emphasized in recent work is community structure,
the gathering of vertices into groups such that there is a
higher density of edges within groups than between them.
Prior works [18], [19] have demonstrated that the function
call graph is also one typical network which can be used
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to detect its community structures. The functions of soft-
ware in one community structure have strong connections
and they are always located in same class or package to
implement software functionalities together. Leveraging the
characteristic of software network, we divide the SARG into
a set of subgraphs with community detection algorithm [11]
which is based on the probability flow of random walks on
the network. With algorithm [11] more subgraphs with less
nodes are generated than other algorithms [20], [21], which
effectively reduces the complexity of graph matching.
Moreover, most subgraphs have no relation with sensitive
data which might do little help for malware classification.
Thus we introduce the definition of sensitive subgraph.
Definition 2: Sensitive Subgraph: it is a subgraph which
contains at least one sensitive API node. Sensitive subgraph
sg in family f also contains a weight value w(sg, f) to
denote its importance to the family. It is represented as:

w(sg, f) = Z w(vi, f),

v €V, (sg)

“)

where V;(sg) denotes the set of sensitive APIs in sg.

2) Graph Matching: To quantify the similarity of two
sensitive subgraphs, we propose a novel weighted sensitive
APIs-based approach which can detect homogeneous app
behaviors of malwares in the same family while tolerating
minor differences of implementation.

For two sensitive subgraphs (sg; and sgo) in family f,
their similarity sim¢(sg1, sg2) is calculated with three steps.

Step 1: construct distance matrixes for two subgraphs.

We first construct two distance matrixes for the two sub-
graphs, whose sizes are both ¢ x t,t = |Vi(sg1) U Vs(sg2)|.
The distance matrix of sg; is obtained with Eq.(5) and the
distance matrix of sgo is calculated similar as sg; where
the distance is calculated in sgy. Note that in Eq.(5), the
graph is regarded as an undirected graph while calculating
the shortest path length between two nodes (dis’(v;, v;)),
which is different from that in Section II-A2.

.y .
Matriafi ) = { 00 o € Vo)
(5)

Step 2: calculate the similarity of sensitive nodes.

In our work, we only focus on the sensitive nodes. The
similarity of the same sensitive node v; in two subgraphs
is represented as ns(v;). It depends on the weight of
the sensitive node (w(v;, f)) and the distances from it to
other sensitive nodes. ns(v;) is obtained with Eq.(6)-(8).
vec(v;, 892; is obtained similar as vec(v;, sg1) in which the
corresponding elements are calculated in sgs.

ns(v;) = cos(vec(vi, sg1), vec(vi, 5g2)) 6)
vec(vi, $g1 ) = (e(visv1), ... e(v,v)) 7
w(v],f) A A <5<
vy = § Aetooy o) ZOLSTSE g
otherwise



Step 3: calculate the similarity of subgraphs.

Based on the above two steps, simy(sgi,sg2) is calcu-
lated with Eq.(9).
ZviEVS(sgl)ﬁVS(sgz) (w(vi7 f) * TLS(Ul))

ZmeVS (sg1)UVs(sg2) ’LU(’UZ', f)

simy(sg1,sg2) =
)

The similarity ranges from O to 1 where the maximum
value 1 means that the two subgraphs implement the exact
same behaviors, while the minimum value 0 means that they
are totally different. Note that the similarity between sg; and
sgo is not higher than :L’;Z((Zizgl’f)’w(sg%f)) , which can be

91,f),w(s92,f)) T
used to reduce the number of pair-wise graph matching in
latter work.

3) Subgraph Clustering: With the effective and efficient
graph matching approach, we generate the fregraph based
on the clustering of subgraphs without prior knowledge.

Algorithm 1 highlights the step of generating fregraph
with the input of a set of sensitive subgraphs in family
f and the similarity threshold value /. In our work,
is set to 0.8 which indicates that if the similarity of two
sensitive subgraphs is higher than 0.8, they are considered
as the same one and are put into the same cluster. In the
algorithm, sim(sg;,c;) returns the average similarity of
sg; with all the sensitive subgraphs in cluster c;. It is worth
noting that the cluster c; is a multiset of subgraphs which
allows multiple instances of the multiset’s elements.

Algorithm 1 Clustering of Sensitive Subgraphs

Input:
SGyp={sgill <i<|SGyl}

subgraphs in family f

// the set of sensitive

=08 /I the similarity threshold value
C={¢|ll <j<ppeN} /I the set of output
clusters

Output:

1: C+0,p+0
2: for each sg; in SG do
3. if C # () then

4: Cu = argmaz, cc simys(sgi, ¢;)
5: if sim¢(sg;, cy) > G then
6: Cy = Cy U {ng}

7: else

8: p=p+1,c¢,={sg}

9: C=CU{cy}

10: end if

11:  else

12: p=1c1={sg:},C={c1}
13:  end if

14: end for

15: return C

Definition 3: Fregraph: given a cluster set C
{c1,¢2,...,¢cp} in family f and a sensitive subgraph sg.
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les |

The support of sg in family f is sups(sg) = fn("f) ,89 € ¢j
and fn(f) denotes the number of malwares in family f. A
fregraph fg is a sensitive subgraph whose support supy(sg)
is no less than the minimum support threshold 6.

Fig.4 presents an example of generated fregraph, which
is used by all the malware samples in geinimi family and
its support is 1.0. According to the semantic meanings of
the sensitive APIs in the graph, it collects various personal
information such as phone number, IMEIL.

getVoiceMailNumber()

o 1 ./. gegubscriberld()
X

lxr\
Devieeki(
getDevice 7
o/
getLinelNugber() /

[N
getSimSerialNumber()

Figure 4: An example of generated fregraph
C. Feature Construction

To enable malware classification, all the fregraphs in
known families are embedded into a feature space. How-
ever, there are some fregraphs which belong to more than
one family. Therefore there is a map between fregraphs
and families. Fig.5 is an example of a map between four
fregraphs and three malware families. The number between
a fregraph and a family denotes the support of fregraph
to its corresponding family. Intuitively, the fregraphs which
belong to several families such as fg» should have lower
contributions to malware classification than the ones which
belong to only one family such as fgs.

fa

Vi
s

fo
\"e

fgs

fo
A £ A
0 74 ITO
L

1.0 0.9\/
geinimi droid pankton
kungfu

Figure 5: An example of map between four fregraphs and
three malware families

The contribution of a fregraph to malware classification
is represented as c¢b(fg) and it is calculated based on the
entropy value.

cb(fg) = Y p(filf9)logs p(filf9),

fi€EF

(10)

where p(f;]fg) denotes the distribution probability the app



belongs to the family f; if it contains fregraph fg.
__ supy,(fg)
Zf,,; cr supy, (f9)

Then the contributions of all sensitive subgraphs are nor-
malized as:

p(filf9) 1)

cb(fg) — cbmin

Cbnw,z - Cbrnin

b (fg) = (12)
Next, the feature vector of each malware is constructed
for the purpose of classification. For each fregraph contained
in the malware, its corresponding value in the vector is
set to the contribution value of the fregraph, or it is set
to 0. For example, the feature vector of a malware can
be represented as (cb’(fg1),cb'(fg2),0,0,...). Specifically,
for the known malware samples in training dataset, their
family labels are attached with the feature vector so that the
classifiers can understand the discrepancy between different
malware families. Once the feature vectors for the training
malware samples are generated, a classifier can be trained
with different machine learning algorithms such as SVM.

III. EVALUATION

To evaluate the effectiveness of FalDroid, first we in-
troduce the dataset and metrics. We then investigate the
following three main research questions:

RQ 1: Can our approach classify the new malware into
its family with a high accuracy? For this purpose, we
evaluate our approach on our dataset and compare it with
three baseline approaches (see Section III-B for details).

RQ 2: Can our approach handle large scale of mal-
wares? For this purpose, we analyze the statistic of generated
graphs and the run-time overhead of our approach (see
Section III-C for details).

RQ 3: Can our approach be resilient to polymorphic
variants and typical obfuscation techniques? For this pur-
pose, we compare the effectiveness of our sensitive APIs-
based graph matching approach with GED and evaluate
FalDroid on obfuscated apps and packed apps (see Section
III-D for details).

A. Dataset and Metrics

All the malware samples in our dataset are downloaded
from Virusshare and each of them has been uploaded to
VirusTotal® which is a system that contains more than 50
anti-virus scanners. The anti-virus scanners such as AVL,
McAfee and ESET-NOD32 are based on signature database
detection and they are useful for known malwares but less
effective for the unknown ones. There are two drawbacks
about the results provided by the anti-virus scanners: 1) the
family labels defined by each anti-virus scanner have minor
differences such as Plankton/Plangton/planktonc; 2) the
results of the anti-virus scanners seldom reach a consensus.

Shttp://www.virustotal.com/en/
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To fight against the two drawbacks we first construct a
family label dictionary based on string edit distance. We
then label the malware with the family name which is the
consistent result returned by more than half of the anti-
virus scanners. Therefore, 6,565 malware samples in 30
families are labeled and they are listed in TABLE Al in
the Appendix. For each family, two-thirds of malwares are
used as training samples and the remaining malwares are
used as testing samples.

The metrics used to measure our classification results
are shown in TABLE A2 in the Appendix. Our system is
implemented in 7,400 lines of java code and 900 lines of
python code. Our experiments are conducted on a quad-core
3.20 GHz PC operating on Ubuntu 14.04(64 bit) with 16GB
RAM and 1TB hard disk.

B. Effectiveness of FalDroid

1) Performance with Four Different Classifiers: Our ap-
proach is evaluated with four different classifiers: SVM
(linear kernel), Decision Tree (C4.5), K-NN (k=1) and
Random Forest. For each family it has its own detection
result, we use the term classification accuracy to denote the
weighted percent of malwares that are correctly classified
into their families. Fig.6 presents classification accuracies
of the four classifiers for different support thresholds from
0.1 to 0.9. We can draw three conclusions From Fig.6:

0.95f

0.9p

Classification Accuracy

——SVM
08 | ——KNN ]
—*—Decision Tree

—&— Random Forest

P B —— o
0.1 02 03 04 05 . 07 08 09

Support Threshold
Figure 6: Classification accuracies of FalDroid with four
different classifiers

(1) All of the four classifiers can get a good result which
is higher than 80%.

SVM performs the best among the five classifiers. Its
accuracy can achieve 0.961 when the threshold is 0.1.
The performance decreases with the increase of sup-
port threshold especially when it is higher than 0.6. As
illustrated in Fig.7, with the increase of the support
threshold from 0.1 to 0.9, the number of features
decreases. Specifically, there are no fregraphs for some
families when the support threshold is higher than 0.6
which causes the lower accuracy.

(ii)
(iii)



Table II: Classification Performance For 30 Families With SVM When The Support Threshold Is Set To 0.5

Malware Family =~ TPR FPR p r F AUC  Malware Family = TPR FPR p r F AUC
adwo 0.879 0.002 0946 0879 0911 0.938 hongtoutou 1 0 1 1 1 1
airpush 0.600 0.001 0833 0.600 0.698 0.799 iconosys 0.98 0 1 0.98 0.99 0.99
basebridge 0950 0.002 0960 0.950 0.955 0.974 imlog 1 0 1 1 1 1
boqx 0375 0.001 0.667 0375 0480 0.687 kmin 0.976 0 1 0976 0.988 0.988
boxer 1 0 1 1 1 1 kuguo 0924 0.003 0940 0924 0.932 0.960
clicker 1 0 1 1 1 1 mobiletx 1 0 1 1 1 1
dowgin 0908 0.006 0933 0908 0.921 0.951 piapps 0.963 0 1 0963 0981 0.981
droiddreamlight 0941  0.002 0.865 0.941 0.901 0.969 plankton 0981 0.002 098 0981 0983  0.99
droidkungfu 0975 0011 0918 0975 0.988 0.988 smskey 0972 0.001 0946 0972 0959 0.986
fakedoc 1 0 1 1 1 1 smsreg 0.825 0.006 0.733 0.825 0.776 0.910
fakeinst 0996 0.002 0987 0.996 0.991 0.997 utchi 1 0 1 1 1 1
fakeplay 1 0.001  0.875 1 0.933 1 waps 0959 0.005 0950 0959 0955 0977
geinimi 1 0 1 1 1 1 youmi 0711  0.003 0.794 0.711 0.750 0.854
gingermaster 0.893  0.010 0.838 0.893 0.865 0.942 yzhc 1 0 1 1 1 1
golddream 0.963 0 1 0963 0981 0.981 zitmo 1 0 0.909 1 0.952 1
Avg. 0945 0.004 0944 0945 0944 0971
3500 T T T T T T T T T

@
o
o
o

n
o
o
(=]

n
o
[=]
o

1500

1000

Number of Fregraph-based Features

o
o
o

0.1

02 03 04 05 06 07 08 09
Support Threshold

Figure 7: Number of fregraph-based features for different
support thresholds

Moreover, when the support threshold is set to 0.5, the
accuracy of SVM decreases by 1.6% while the number of
features decreases by 85% compared to the result when the
threshold is set to 0.1. Thus, we select SVM as our classifier
and set the support threshold to 0.5 in latter experiments.

TABLE 1I shows the detail classification results for the
30 families when the support threshold is 0.5. Most families
get a TPR value higher than 0.9. Furthermore, 11 families
even get a TPR value as high as 1, and a FPR value as
low as 0, which means that all their samples are correctly
classified and no other malware samples are incorrectly
classified into such families. However, there are still some
families such as bogx that performs not as well as others,
since it only contains 2 unique fregraph-based features. In
summary, FalDroid performs well for most families.

FalDroid can correctly classify 94.5% malwares into
their families on our dataset.

2) Comparison Result with Baseline Approaches: We
compare our approach with three baseline approaches [4],
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[22], [23] on a widely used benchmark dataset,which is
provided by Android Malware Genome Project [3] and has
been tested in the three approaches. The descriptions of the
three approaches are listed as below:

o Suarez et al. [23] proposed Dendroid, which automati-
cally classifies malware and analyzes families based on
the code structures.

Feng et al. [4] proposed Apposcopy, which extracts
data-flow and control-flow properties of a new app to
identify the family it belongs to.

Zhang et al. [22] proposed a semantic-based approach
called DroidSIFT that classifies Android malware via
API dependency graphs.

0.967

Classification Accuracy

Dendroid DroidSIFT

Apposcopy

FalDroid

Figure 8: Classification accuracies of FalDroid and three
baseline approaches on same dataset

The comparison result is illustrated as Fig.8. FalDroid
performs better than the three baseline approaches on
the same dataset. Most related to our work is DroidSIFT
and there are two major differences between them. First,
DroidSIFT needs a set of graphs extracted from benign
apps to remove the common ones extracted from malware
while FalDroid uses a clustering-based approach to mine



fregraphs only from malwares in families to depict their
commonalities. It is hard for DroidSIFT to ensure the
completeness of the benign graph set. Second, DroidSIFT
calculates the similarity between graphs based on an
improved weighted GED while FalDroid uses a novel
weighted sensitive APIs based approach, which is more
robust and effective than GED for detecting homogeneous
app behaviors while tolerating minor differences of
implementation (see Section III-D1 for details).

FalDroid performs better than three existing
baseline approaches on same dataset.

C. Efficiency of FalDroid

1) Summary of Generated Subgraphs: Fig.9 summarizes
the statistic information of sensitive subgraphs. The left fig-
ure illustrates the cumulative distribution function (CDF) for
the number of sensitive subgraphs generated by community
detection algorithm. On average, 90 sensitive subgraphs are
generated for each malware, and more than 90% of the
malware samples contain less than 200 sensitive subgraphs.
The right figure illustrates the CDF for the number of
nodes in each sensitive subgraph. On average, there are 10
nodes in sensitive subgraph. Furthermore, there are about
750,000 sensitive subgraphs in total and only 0.8% of which
contain more than 50 nodes. These facts serve as the basic
requirements for the scalability of our approach, since the
run-time performance of graph matching depends on the
number of sensitive subgraphs and the nodes in them.
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Figure 9: CDFs for number of sensitive subgraphs and
number of nodes in sensitive subgraphss

2) Run-time overhead: Our approach consists of three
main procedures when analyzing a new malware:

o Graph Construction: the APK file is disassembled to
generate the Dalvik code and a SARG is constructed.

o« Community Detection: the SARG is divided into a set
of subgraphs with community detection algorithm.

« Feature Construction: the subgraphs of the new mal-
ware are matched with the fregraph-based features to
generate a feature vector.

The runtime overheads of the three main procedures are
illustrated in Fig.10 and Fig.11. It costs 2.4s on average
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to construct the graph model for a given APK file. In the
procedure of community detection, 1.5s is needed on average
to divide the graph into a set of subgraphs while 12.5s is
needed if the graph is not simplified with Eq.(2) and Eq.(3).
The run-time overhead of feature construction depends on
the size of feature space. With the increase of support
threshold, the corresponding cost of feature construction
decreases. It costs only 0.5s on average to generate the
feature vector of a new malware when the threshold is 0.5.
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Figure 10: CDFs of run-time overhead for graph construction
and community detection
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Figure 11: Run-time overhead of feature construction for
different support threshold

The average run-time overhead of FalDroid is 4.4s and
95% of the samples are processed within 10s. FalDroid
needs less time than DroidSIFT [22] and Apposcopy [4]
which cost 175.8s and 275s to analyze an app on average,

respectively.

The low run-time overhead makes FalDroid be able
to handle large scale of malwares.

D. Resilience of FalDroid

1) Resilience to Polymorphic Variants: In our work, to
fight against the polymorphic variants we perform graph
matching with a novel sensitive APIs-based approach. Here,
we evaluate the effectiveness of our graph matching ap-
proach and compare it with the GED which has been widely
used by existing works [22], [24], [25].



The GED metric depends on the choice of edit operations
and the cost involved with each operation (node inser-
tion/deletion, edge insertion/deletion and node relabeling).
Specifically, we do not consider the cost of relabeling
since the label of node is easily changed by obfuscation
techniques. However, there is another issue that if two
subgraphs have similar structure but their labels are different
(not obfuscated), they will be regarded as the similar ones
with GED.

To this end, we manually construct two subgraph sets:

o Similar set, which consists of 50 sensitive subgraphs
generated from 50 different malwares in geinimi family.
These 50 sensitive subgraphs implement similar mali-
cious behaviors and they are regarded as the same one
even they have minor differences.

e Dissimilar set, which consists of 50 sensitive subgraphs
generated from one malware. Any two of them do not
contain same sensitive node, which means that they
implement totally different behaviors.

In both the two subgraph sets, each subgraph is matched
with others, and there are 49*49 pair-wise graph matching
similarities.

Fig.12 presents the effectiveness of our work and GED
in similar set (illustrated in left figure) and dissimilar set
(illustrated in right figure). In the similar set, with our
approach all the similarities are higher than 0.8 (selected
as the similarity threshold when clustering subgraphs). For
GED, about 10% of similarities are lower than 0.8. In the
dissimilar set, all the similarities are 0 with our approach.
However, the similarities range from 0.1 to 1 and there are
about 3% of similarities higher than 0.8 with GED.
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Figure 12: Effectiveness of sensitive APIs-based graph
matching and GED in similar set and dissimilar set

Furthermore, our approach costs less than 1ms to finish
one pair-wise graph matching on average while GED needs
about 7ms. The low run-time overhead of our approach
makes it scalable for the clustering of thousands of sub-
graphs.

In summary, our approach can better uncover
homogeneous behaviors while tolerating minor differences
compared to GED.

FalDroid is resilient to polymorphic variants based
on the sensitive APIs-based graph matching.
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2) Resilience to Code Obfuscation and Packer: We eval-
uate the resilience of FalDroid to typical local obfuscation
techniques such as renaming of the user-defined functions,
instruction reordering and branch inversion. To this end, we
employ Proguard’ to obfuscate apps from source codes. The
results show that even though for the obfuscated ones there
might be several functions less than the source apps, their
similarities of graph matching are still 1.

Then we use existing packers such as APKProtect® and
Bangcle® which pack apps with a shell to fight against the
de-compilation tools. It fails to get the Dalvik code by
apktool directly. However, we can successfully remove the
shell with the tool DexDumper [26] and can also get the
Dalvik code. Therefore, such packers have little influence
on our approach.

FalDroid is resilient to typical code obfuscation
techniques and packers.

IV. LIMITATIONS AND THREATS TO VALIDITY

Like any empirical study, our evaluation is subject to
threats to validity, many of which are induced by limitations
of our approach. The most important threats and limitations
are listed as below.

External validity. Due to the current limitations in our
implementation and testing environment, our dataset consists
of 6,565 malware samples from 30 families labeled with the
results of VirusTotal, which may not be absolutely accurate.
Furthermore, only 30 families may not be representative
of the entire malware families. We plan to collect more
malware families in the future to address such limitations.

Native code. In this work only the Dalvik code is ana-
lyzed by our approach. We do not consider the native code.
Hence, the malicious behavior implemented in the native
code is not reflected in our graph model and we are not
able to correctly classify it into its family.

Static analysis. Since FalDroid relies on static function
call graph, it suffers from limitations that are typical for
static analysis. FalDroid fails to overcome advanced obfus-
cation techniques such as encryption and reflection [27]. It
is very hard for the de-compilation tools to get the source
code once the app is encrypted, which makes it impossible
to construct our graph model. Furthermore, the reflection
techniques can hide away some edges in the call graph
model by invoking functions with their corresponding names
as arguments. Dynamic analysis paired with test generation
may be a better option to catch the missed behavior [28],
[29].

"http://proguard.sourceforge.net/
8http://www.eoeandroid.com/forum.php?mod=viewthread&tid=304353
9http://www.bangcle.com/appProtect/



V. RELATED WORK

In this section, we discuss the previous work related to
malware classification and graph-based program analysis.

A. Familial Malware Classification

Many prior efforts have been made to automatically
classify malware via machine learning on PC platform and
mobile platform.

On PC platform, Kolter and Maloof [30] proposed an
approach which uses n-grams of byte codes as features to
generate a classifier for malware classifying. Kinable and
Kostakis [25] studied malware classification based on call
graph clustering which represents the malware samples as
function call graphs. Similarly, Hu et al. [31] implemented
a malware database management system called SMIT which
also converts each malware into its call graph representation,
and performs nearest neighbor search based on this graph
representation.

Compared to the malware in forms of Internet worms
and computer viruses on PC platform, the mobile malware
contains two main differences: 1) mobile malware invokes
the sensitive APIs to perform malicious behaviors; 2) mobile
malware is more easily produced by injecting malicious
payloads into legitimate apps with mature de-compilation
tools compared to the malicious executables on PC platform.
Leveraging the two main differences, malware classification
approaches on mobile platform have better performance than
those on PC platform.

On mobile platform, Android is the major target of mo-
bile malware. Suarez et al. [23] proposed Dendroid, which
automatically classifies malware and analyzes families based
on the code structures. However, the code structure is
easily evaded by bytecode-level transformation. Yang et
al. [8] proposed DroidMiner which formalizes a two level
behavioral graph model and extracts sensitive path to denote
the malicious behavioral patterns as features for malware
classification. The sensitive path might appear in both legiti-
mate part and malicious components, which would affect the
classification performance. Most related to our work is the
approach proposed by Zhang et al. [22], DroidSIFT, which is
a semantic-based approach that classifies Android malware
via dependency graphs. However, it relies on a set of benign
subgraphs to remove common ones in malwares, and it is
hard to ensure the completeness of the benign subgraph set.

B. Graph-based Program Analysis

More and more recent works on Android detections are
based on graph analysis such as PDG (Program Dependence
Graph) [32], [33], CDG (Control Dependence Graph) [34],
[35], FCG (Function Call Graph) [22], [36], and UI (user in-
terface) Graph [37]-[39]. They are structural representations
known to be less susceptible to instruction-level obfuscations
commonly employed by malware authors to evade anti-virus
scanners.
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Crussell et al. [32] proposed DNADroid to detect cloned
apps by comparing the PDGs between functions in candidate
apps. Chen et al. [35] used the geometry characteristics
(centroid) of CDGs to measure the similarity between func-
tions of apps. Gascon et al. [36] proposed an approach on
malware detection based on efficient embedding of function
call graphs with an explicit feature map. Chen et al. [39]
proposed MassVet which models the app’s Uls as a directed
graph where each node is a view and each edge describes the
navigation (triggered by the input events) relations among
them. With the similar view structures in different apps,
MassVet can effectively discover the repackaged apps.

UI graphs are not proper for familial malware classifica-
tion since they are totally different for various malwares in
same family. PDG and CDG are more fine-grained model
than FCG, and they need expensive cost to analyze the app
behaviors. With FCG, we can get an enough good result
with low run-time overhead.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we construct fregraph to depict the com-
monalities of malwares in the same family and propose
FalDroid, an automatic system that can handle large scale
of Android malwares for familial classification with high
accuracy. At first, we propose two observations to reflect the
characteristics of the malwares in the same family. Exploit-
ing the two observations, the common malicious behaviors in
the same family are extracted with an automatic clustering-
based approach, in which the subgraphs are matching with
a weighted sensitive APIs-based approach. Finally, each
generated fregraph is embedded into a feature space to
classify the unknown malware samples into its correct
family. FalDroid is evaluated on 6,565 malware samples in
30 families. Experiments show that it can correctly classify
94.5% malwares into their families around 4.4s per app on
average.

Our work presented in this paper can be improved and
extended by building a more detailed graph model combined
with data-flow information. Subgraphs with both control-
flow and data-flow information can better depict far more
precise semantic meanings of malware families. Further-
more, combining with the dynamic analysis can help us
better fight against the advanced obfuscation techniques.
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APPENDIX

Table Al: Descriptions Of Malware Families

Malware Family ~ #Num  Malware Family = #Num
adwo 292 hongtoutou 46
airpush 75 iconosys 153
basebridge 303 imlog 41
bogx 49 kmin 247
boxer 85 kuguo 358
clicker 37 mobiletx 81
dowgin 556 pjapps 82
droiddreamlight 101 plankton 626
droidkungfu 725 smskey 111
fakedoc 146 smsreg 123
fakeinst 668 utchi 285
fakeplay 43 waps 590
geinimi 105 youmi 113
gingermaster 366 yzhc 49
golddream 79 zitmo 30

Table A2: Descriptions Of The Used Metrics

Term Abbr Definition
s #malwares in family f are
True Positive ™ correctly classified into family f.
True Negative N #malwares not in family f are

correctly not classified into family f.
#malwares in family f are incorrectly
not classified into family f.

#malwares not in family f are

False Negative FN

False Positive FP incorrectly classified into family f.
True Positive Rate ~ TPR TP/(TP+FN)
False Positive Rate ~ FPR FP/(FP+TN)
Precision p TP/(TP+FP)
Recall r TP/(TP+FN)
F-measure I3 2rp/(r+p)
ROC Area AUC Area under ROC curve




