ResearchGate

See discussions, stats, and author profiles for this publication at:

Exploiting Thread-Related System Calls for
Plagiarism Detection of Multithreaded
Programs

Article - June 2016

DOI: 10.1016/}.js5.2016.06.014

CITATION READS
1 126

6 authors, including:

) ;",v' Xi'an University of Posts and Telecommunica...‘ Xi'an Jiaotong University

10 PUBLICATIONS 24 CITATIONS 51 PUBLICATIONS 165 CITATIONS
SEE PROFILE SEE PROFILE

Xi'an Jiaotong University 9 Western Michigan University

246 PUBLICATIONS 1,409 CITATIONS 95 PUBLICATIONS 1,356 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot VACCS: Visualization and Analysis for C Code Security

All content following this page was uploaded by on 27 June 2016.

The user has requested enhancement of the downloaded file. All in-text references are added to the original document

and are linked to publications on ResearchGate, letting you access and read them immediately.

https://www.researchgate.net/publication/303917139_Exploiting_Thread-Related_System_Calls_for_Plagiarism_Detection_of_Multithreaded_Programs?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303917139_Exploiting_Thread-Related_System_Calls_for_Plagiarism_Detection_of_Multithreaded_Programs?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/VACCS-Visualization-and-Analysis-for-C-Code-Security?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenzhou_Tian?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenzhou_Tian?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_University_of_Posts_and_Telecommunications?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenzhou_Tian?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting_Liu44?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting_Liu44?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting_Liu44?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua_Zheng?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua_Zheng?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua_Zheng?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zijiang_Yang2?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zijiang_Yang2?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Western_Michigan_University?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zijiang_Yang2?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenzhou_Tian?enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

The Journal of Systems and Software 119 (2016) 136-148

Contents lists available at ScienceDirect

s

3

1t
I

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Exploiting thread-related system calls for plagiarism detection of
multithreaded programs

@ CrossMark

Zhenzhou Tian? Ting Liu®* Qinghua Zheng? Ming Fan? Eryue Zhuang? Zijiang Yang"?

2 MOEKLINNS, Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'‘an 710049, China
b Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA

ARTICLE INFO ABSTRACT

Article history:

Received 20 March 2016
Revised 18 May 2016
Accepted 7 June 2016
Available online 9 June 2016

Dynamic birthmarking used to be an effective approach to detecting software plagiarism. Yet the new
trend towards multithreaded programming renders existing algorithms almost useless, due to the fact
that thread scheduling nondeterminism severely perturbs birthmark generation and comparison. In this
paper, we redesign birthmark based software plagiarism detection algorithms to make such approach ef-
fective for multithreaded programs. Our birthmarks are abstractions of program behavioral characteristics
based on thread-related system calls. Such birthmarks are less susceptible to thread scheduling as the
system calls are the sources that impose thread scheduling rather than being affected. We have con-
ducted an empirical study on a benchmark that consists of 234 versions of 35 different multithreaded
programs. Our experiments show that the new birthmarks are superior to existing birthmarks and are
resilient against most state-of-the-art obfuscation techniques.

Keywords:

Software plagiarism detection
Software birthmark
Multithreaded program
Thread-aware birthmark

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Software plagiarism, ranging from open source code reusing to
smartphone app repacking, severely affect both open source com-
munities and software companies. It is widespread because soft-
ware plagiarism is easy to implement but hard to detect. For ex-
ample, a study in 2012 (Zhou et al, 2012) shows that about 5%
to 13% of apps in the third-party app markets are copied and re-
distributed from the official Android market. The unavailability of
source code and the existence of powerful automated semantics-
preserving code obfuscation techniques and tools (Collberg et al.,
2003; Wu et al., 2010; Jiang et al., 2007; Madou et al., 2006; Linn
and Debray, 2003) are a few reasons that make software plagia-
rism detection a daunting task. Nevertheless, significant progress
has been made to address this challenge. One of the most effective
approaches is software birthmarking, where a set of characteris-
tics, called birthmarks, are extracted from a program to uniquely
identify the program. As illustrated in previous works (Myles and
Collberg, 2004; Tian et al., 2013; Wang et al., 2009a; Zhang et al.,
2014b; Luo et al., 2014; Ming et al., 2016), with proper algorithms
birthmarks can identify software theft even after complex code ob-
fuscations.

* Corresponding author.
E-mail addresses: zztian@stu.xjtu.edu.cn (Z. Tian), tingliu@mail.xjtu.edu.cn (T.
Liu), ghzheng@mail.xjtu.edu.cn (Q. Zheng), fanming.911025@stu.xjtu.edu.cn (M.
Fan), zhuangeryue@stu.xjtu.edu.cn (E. Zhuang), zijiang.yang@wmich.edu (Z. Yang).

http://dx.doi.org/10.1016/j.jss.2016.06.014
0164-1212/© 2016 Elsevier Inc. All rights reserved.

Despite the tremendous progress in software birthmarking, the
trend towards multithreaded programming greatly threatens its ef-
fectiveness, as the existing approaches remain optimized for se-
quential programs. For example, birthmarks extracted from mul-
tiple runs of the same multithreaded programs can be very dif-
ferent due to the inherent non-determinism of thread scheduling.
In this case software birthmarking fails to declare plagiarism even
for simply duplicated multithreaded programs. In this paper, we
introduce a thread-aware dynamic birthmark called TreSB (Thread-
related System call Birthmark) that can effectively detect plagia-
rism of multithreaded programs. Being extracted by mining behav-
ior characteristics from thread-related system calls, TreSB is less
susceptible to thread scheduling as these system calls are sources
that impose thread scheduling rather than being affected. In ad-
dition, unlike many approaches (Liu et al., 2006; Prechelt et al.,
2002; Cosma and Joy, 2012), our approach operates on binary ex-
ecutables rather than source code. The latter is usually unavailable
when birthmarking is used to obtain initial evidence of software
plagiarism.

We have implemented a prototype based on the PIN (Luk et al.,
2005) instrumentation framework, and conducted extensive exper-
iments on an publicly available benchmark! consisting of 234 ver-
sions of 35 different multithreaded programs. Our empirical study
shows that TreSB and its comparison algorithms are credible in

T http://labs.xjtudlc.com/labs/wlaq/TAB-PD/site/download.html.

http://dx.doi.org/10.1016/j.jss.2016.06.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.06.014&domain=pdf
mailto:zztian@stu.xjtu.edu.cn
mailto:tingliu@mail.xjtu.edu.cn
mailto:qhzheng@mail.xjtu.edu.cn
mailto:fanming.911025@stu.xjtu.edu.cn
mailto:zhuangeryue@stu.xjtu.edu.cn
mailto:zijiang.yang@wmich.edu
http://labs.xjtudlc.com/labs/wlaq/TAB-PD/site/download.html
http://dx.doi.org/10.1016/j.jss.2016.06.014
https://www.researchgate.net/publication/303948585_Deviation-Based_Obfuscation-Resilient_Program_Equivalence_Checking_With_Application_to_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/301428625_Semantics-based_obfuscation-resilient_binary_code_similarity_comparison_with_applications_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/285936932_Program_Logic_Based_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/285936932_Program_Logic_Based_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/241623856_Detecting_Repackaged_Smartphone_Applications_in_Third-Party_Android_Marketplaces?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221653862_GPLAG_Detection_of_software_plagiarism_by_program_dependence_graph_analysis?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220989942_LOCO_an_interactive_code_Deobfuscation_tool?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220905153_Detecting_Software_Theft_via_Whole_Program_Path_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220905153_Detecting_Software_Theft_via_Whole_Program_Path_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220752268_9_8_Pin_Building_Customized_Program_Analysis_Tools_with_Dynamic_Instrumentation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220752268_9_8_Pin_Building_Customized_Program_Analysis_Tools_with_Dynamic_Instrumentation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220328285_An_Approach_to_Source-Code_Plagiarism_Detection_and_Investigation_Using_Latent_Semantic_Analysis?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220269513_Mimimorphism_A_New_Approach_to_Binary_Code?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/4251304_DECKARD_scalable_and_accurate_tree-based_detection_of_code_clones?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/3437494_SANDMark-A_tool_for_software_protection_research?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/3437494_SANDMark-A_tool_for_software_protection_research?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2865334_Obfuscation_of_Executable_Code_to_Improve_Resistance_to_Static_Disassembly?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2865334_Obfuscation_of_Executable_Code_to_Improve_Resistance_to_Static_Disassembly?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/profile/Ting_Liu44?el=1_x_100&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/profile/Ming_Fan12?el=1_x_100&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/profile/Zhenzhou_Tian?el=1_x_100&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/profile/Qinghua_Zheng?el=1_x_100&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/profile/Zijiang_Yang2?el=1_x_100&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/profile/Eryue_Zhuang?el=1_x_100&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148 137

differentiating independently developed programs, and resilient to
most state-of-the-art semantics-preserving obfuscation techniques
implemented in the best commercial and academic tools such as
SandMark (Collberg et al., 2003) and DashO (Patki, 2008). In
addition, a comparison of our method against two recently pro-
posed thread-aware birthmarks show that TreSB outperforms both
of them with respect to any of the three performance metrics URC,
F-Measure and MCC.

The remainder of this paper is organized as following.
Section 2 presents our thread-related system call birthmark after
introducing the concept and definition of birthmarks. Section 3 de-
scribes our approach and prototype on exploiting our birthmarks
to detect plagiarism of multithreaded programs. Section 4 presents
the empirical study on an open benchmark, including the evalua-
tion of its effectiveness and the performance comparison against
existing methods. It also compares TreSB against another po-
tential birthmark that also exploits thread-related system calls.
Section 5 reviews related work, followed by conclusions and future
work in Section 6.

2. Software birthmarks

In this section we first give a brief review of the formal defini-
tions of software birthmarks. We then introduce our thread-related
system call birthmark TreSB with its implementation, and explain
why it is suitable to serve as birthmark for multithreaded pro-
grams.

2.1. Dynamic software birthmarks

A software birthmark, whose classical definition is given in
Definition 1, is a set of characteristics extracted from a program
that reflects intrinsic properties of the program and that can be
used to identify the program uniquely. This definition leads to
works (Tamada et al., 2004a; Myles and Collberg, 2005; Choi et al.,
2009; Park et al., 2011) that extract birthmarks statically.

Definition 1Software Birthmark. (Tamada et al., 2004a). Let p be
a program and f be a method for extracting a set of characteristics
from p. We say f(p) is a birthmark of p if and only if both of the
following conditions are satisfied:

- f(p) is obtained only from p itself.
- Program q is a copy of p= f(p) = f(q).

Generated mainly by analyzing syntactic features, static birth-
marks tend to overlook operational behaviors of a program. As
a result, they are usually ineffective against semantics-preserving
obfuscations that can modify the syntactic structure of a pro-
gram. Besides, static birthmarks are easily defeated by the pack-
ing techniques (Roundy and Miller, 2013; Guo et al., 2008) that
add shells to the plagiarized program to evade detection. Exe-
cutables processed with these techniques can become rather dif-
ferent in the static level, and static birthmark methods cannot
be applied unless the shells can be firstly recognized and un-
packed. Thus dynamic birthmarks, as defined in Definition 2, are
introduced to remedy the problems. Comparing with static birth-
marks, dynamic birthmarks are extracted based on runtime behav-
iors and thus are believed to be more accurate reflections of pro-
gram semantics. It has been generally agreed that dynamic birth-
marks are more robust against semantics-preserving code obfusca-
tions (Tamada et al., 2004b; Wang et al., 2009a; 2009b; Lim et al.,
2009; Chan et al., 2013; Tian et al., 2015).

Definition 2Dynamic Software Birthmark. (Myles and Collberg,
2004). Let p be a program and I be an input to p. Let f(p) be a
set of characteristics extracted from p by executing p with input L

We say f(p, I) is a dynamic birthmark of p if and only if both of the
following conditions are satisfied:

- fip, I) is obtained only from p itself when executing p with
input I.
- Program q is a copy of p= f(p,.I) = f(q.]).

Based on the above conceptual definitions, various imple-
mentable birthmark methods have been developed by mining be-
havior characteristics from different aspects. Representative dy-
namic birthmarks include SCSSB (Wang et al., 2009b) that is ex-
tracted from system calls, DYKIS (Tian et al., 2013; 2015) that is
extracted from executed instructions, and Birthmarking (Schuler
et al., 2007) that is extracted from executed Java APIs. As dynamic
birthmark based plagiarism detection is essentially determined by
the similarity of execution behaviors, the new trend towards multi-
threaded programming renders existing approaches ineffective. For
a program with n threads, each executing k steps, there can be
as many as (nk)!/(k!)* > (n!)* different thread schedules or inter-
leavings,” a doubly exponential growth in terms of n and k. Since
execution order plays a key role, birthmarks generated from mul-
tiple executions of the same program can be very different, thus
erroneously indicating the same programs to be independently de-
veloped. In order to address this challenge, Tian et al. (Tian et al.,
2014b) proposed the concept of thread-aware birthmark.

Definition 3 Thread-Aware Dynamic Software Birthmark. (Tian
et al., 2014b). Let p, g be two multithreaded programs. Let I be an
input and s be a thread schedule to p and q. Let f{p, I, s) be a set
of characteristics extracted from p when executing p with I and
schedule s. We say f(p, I, s) is a dynamic birthmark of p if and only
if both of the following conditions are satisfied:

- fip, I, s) is obtained only from p itself when executing p with
input I and thread schedule s.
- Program q is a copy of p= f(p.I,s) = f(q,1,5).

Similar to Definitions 1 and 2, Definition 3 provides a concep-
tual guideline without considering any implementation details. In
practice it is almost impossible to predetermine a thread sched-
ule and enforce the same thread scheduling across multiple runs,
especially for the programs that have been obfuscated or even in-
dependently developed (Olszewski et al., 2009; Cui et al., 2011).
Thus in our algorithm we mine execution characteristics that
are not or little affected by non-deterministic thread schedules.
That is, to make a birthmark thread-aware, we must ensure that
Vs, .s,es: S (D I.s1) = f(p, I, s2), where S denotes the set of all pos-
sible thread schedules of program p.

In this paper, we propose a practical solution that address the
challenge of plagiarism detection of multithreaded programs. The
principle is similar to previous work (Wang et al., 2009a; Tian
et al., 2014b; Wang et al., 2009b; Tian et al., 2016), where the
authors argue that modifications of system calls usually leads to
incorrect program behavior, and therefore, a birthmark generated
from sequence of system calls can be used to identify stolen pro-
grams even after they have been modified. We argue that thread
related system calls are intrinsic to a multithreaded program. They
are the source to impose thread interleaving rather than being af-
fected by the non-determinism. A random or deliberate modifica-
tion to the thread synchronizations can result in very subtle errors
and therefore they are the least possible code to be changed. Such
hypothesis is confirmed by our empirical study.

https://www.researchgate.net/publication/303296582_A_new_thread-aware_birthmark_for_plagiarism_detection_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/282499587_Software_Plagiarism_Detection_with_Birthmarks_Based_on_Dynamic_Key_Instruction_Sequences?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262233541_Binary-Code_Obfuscations_in_Prevalent_Packer_Tools?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/260299626_Heap_Graph_Based_Software_Theft_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/222763747_A_static_API_birthmark_for_Windows_binary_executables?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/222763747_A_static_API_birthmark_for_Windows_binary_executables?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221427586_A_Study_of_the_Packer_Problem_and_Its_Solutions?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220999307_K-gram_based_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220939083_Kendo_Efficient_Deterministic_Multithreading_in_Software?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220910147_Efficient_Deterministic_Multithreading_through_Schedule_Relaxation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220905153_Detecting_Software_Theft_via_Whole_Program_Path_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220905153_Detecting_Software_Theft_via_Whole_Program_Path_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220609382_A_method_for_detecting_the_theft_of_Java_programs_through_analysis_of_the_control_flow_information?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220609382_A_method_for_detecting_the_theft_of_Java_programs_through_analysis_of_the_control_flow_information?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220459116_Detecting_Common_Modules_in_Java_Packages_Based_on_Static_Object_Trace_Birthmark?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/3437494_SANDMark-A_tool_for_software_protection_research?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2907828_Design_and_Evaluation_of_Birthmarks_for_Detecting_Theft_of_Java_Programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2907828_Design_and_Evaluation_of_Birthmarks_for_Detecting_Theft_of_Java_Programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

138 Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148

Table 1
Thread-related system calls of Linux kernel version 3.2.
No. Name No. Name No. Name No. Name No. Name No. Name
1 exit 48 signal 81 setgroups 154 sched_setparam 175 rt_sigprocmask 243 set_thread_area
2 fork 53 lock 96 getpriority 155 sched_getparam 176 rt_sigpending 244 get_thread_area
7 waitpid 57 setpgid 97 setpriority 156 sched_setscheduler 177 rt_sigtimedwait 256 epoll_wait
1 execve 64 getppid 114 wait4 157 sched_getscheduler 178 rt_sigqueueinfo 258 set_tid_address
20 getpid 65 getpgrp 117 ipc 158 sched_yield 179 rt_sigsuspend 270 tgkill
26 ptrace 66 setsid 120 clone 159 sched_get_priority_max 184 capget 284 waitid
29 pause 67 sigaction 123 modify_ldt 160 sched_get_priority_min 185 capset 321 signalfd
34 nice 69 ssetmask 126 sigprocmask 161 sched_rr_get_interval 190 vfork 327 signalfd4
37 kill 72 sigsuspend 132 getpgid 162 nanosleep 238 tkill 331 pipe2
42 pipe 73 sigpending 136 personality 172 prctl 241 sched_setaffinity 346 setns
46 setgid 80 getgroups 147 getsid 174 rt_sigaction 242 sched_getaffinity
Fotr}l](r;lsew Blocked ;fvlvlzaei B Running callpabluty setting and getting), thread syncl}roplzatlop, signal ma-
{} G []lde nipulating, as well as thread and process priority setting.
The fact that only a small portion, about 20%, of system calls
Thread T I .
1 1 N 1 1 1 are thread related may cast doubt on using them as the base for
Time axis al ol ol | ol al birthmarks. First of all, what if a multithreaded program does not

Teead T2 N DN

Lock/Semaphore Sleep
acquired called

Lock/Semaphore
released

Fig. 1. Execution snippet of a multithreaded program with two threads.

2.2. Thread-related system call birthmark

Fig. 1 depicts a typical execution snippet between two possi-
ble threads of a multithreaded program. Thread T1 (possibly the
main thread) forks a new thread T2 at time t1. Both threads exe-
cute concurrently until T1 is blocked and entered its idle period at
time t3 due to unavailable shared resources (lock or semaphore)
held by T2 since time t2. T2 continues its execution until time
t4 when it invokes sleep and resume its execution at time t5. At
time t6 T2 releases the shared resource, enabling T1 to resume
its execution. Both threads execute concurrently again until time
t7 when T2 terminates. The example shows that thread schedul-
ing can be complex even for two threads. The existence of thread
synchronization controls and context switches brings certain de-
terminism to the execution. For example the usage of locks pro-
tects shared resources and prevents unexpected executions. Mean-
while, there are certain time segments, such as between t1 and 3
and between t6 and t7, multiple threads enjoys concurrency with-
out any restrictions. Obviously depending on many factors such as
system load, multiple executions, even under the same input, can
produce different execution behaviors. This is the key reason that
existing dynamic software birthmarking fails to uniquely identify
multithreaded programs.

Despite the complex thread interleavings as illustrated in Fig. 1,
there must exist characteristics or rules that ensure the correct ex-
ecution under the chaos. System calls that govern thread synchro-
nization, priority setting, thread initiating and disposing, etc, are
sources that enforce thread scheduling rather than being affected.
They are also essential to the semantics and correct executions
of a multithreaded program. We call them thread-related system
calls and believe they form a favorable basis for generating thread-
aware birthmarks. As summarized in Table 1, where Columns No.
and Name give the system call ID and its name, we treat 65 sys-
tem calls as thread-related. They accomplish tasks including thread
and process management (such as creation, join and termination,

2 In this paper, thread schedule or interleaving of a program refers to the order
of threads whose instructions are executed in a valid execution.

even have thread related system calls except forking a bunch of
threads? In theory it is possible but in reality, at least for the real
programs we have studied, such programs do not exist. If there are
no coordination and communication among threads, programmers
may simply develop several sequential applications. On the other
hand, we agree there may exist programs with minimal number of
thread related system calls. Our empirical study shows that they
have surprisingly strong capability to identify thefts and differenti-
ate different program due to their subtle usage and rich varieties.
For example, the nanosleep system call used in Fig. 1 may never ex-
ist in another independently developed program, and removing it
may likely leads to subtle errors. Even for the same types of thread
operations such as forking a new thread, a program may use the
clone while other independently developed programs may use fork
or vfork. Due to their complicated parameter usages and subtle dif-
ference in their meanings, it is very difficult for automated tools
or even programmers to change from one to another. Besides, the
frequency and order of occurrences, which play important role in
our birthmark generation, also contribute to the credibility and re-
silience of our approach.

Based on the above discussions, we propose to extract
thread-aware dynamic birthmarks from thread-related system
call sequences. A thread-related system call sequence tos(p,I) =
(eq.e3,---,en) consists of system calls recorded during the run-
time of a multithreaded program p under input I, in which e; is
a thread-related system call instance. Usually, the thread-related
system call sequences across multiple runs are difficult to compare
directly. In order to address the problem, we adopt the k-gram al-
gorithm (Myles and Collberg, 2005) to bound the sequences with
a length k window, generating a set of fixed-length short subse-
quences called k-grams. Finally, as with the typical dynamic birth-
marks such as SCSSB (Wang et al., 2009b), DYKIS (Tian et al., 2013;
2015) and Birthmarking (Schuler et al., 2007), our birthmark is a
key-value pair set. The keys consist of all unique grams and values
are the frequencies of the corresponding grams. Definition 4 gives
the formal definition of TreSB, the birthmark based on thread-
related system calls.

Definition 4. TreSB. Let tos(p,I) = (ey.e5,---,en) be a
thread-related system call sequence when executing pro-
gram p with input I. A sub-sequence g of tos(p, I) is a k-
gram if gj=(ej ej 1, --.ej4 1) where 1<j<n—k+1. Let
gram(p. 1, k) = (g1....,8,_rs1) be the sequence of all the k-grams
in tos(p, I). The key-value pair set pl(k)={(g;. freq(g;))lg;
gram(p,l,k)AVi#j,gi;égj}, where freq(g;) represents the fre-

https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220999307_K-gram_based_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148 139

quency of g; that occurs in gram(p, I, k), is a thread-related system
call birthmark TreSB.

We also use pj to represent a TreSB if removing the input sym-
bol does not cause confusion. In addition, we define kSet(pg) to be
the set of keys in the TreSB pg.

3. TreSB based software plagiarism detection

Obtaining birthmark is the first step towards plagiarism detec-
tion. The next step is to quantify the similarities and then decide
whether plagiarism exists.

3.1. Similarity calculation

In the literature of software birthmarking, the similarity be-
tween two programs is measured by the similarity of their birth-
marks. Different methods of similarity measurements are used de-
pending on different birthmark formats that in general are se-
quences, sets or graphs. For birthmarks in sequence format, their
similarity can be computed with pattern matching methods, such
as measuring the longest common subsequences (LCS) (Jhi et al.,
2011; Zhang et al., 2012; Jhi et al., 2015). Birthmarks in set form
are usually generated by abstracting sequences into shorter sub-
sequence sets (Myles and Collberg, 2005; Schuler et al., 2007; Xie
et al,, 2010; Tian et al., 2014a; 2015), and then various metrics used
in the field of information retrieval can be adopted for calculating
the similarity between sets, including Dice coefficient (Choi et al.,
2009), Jaccard index (Schuler et al., 2007), Cosine distance (Tian
et al., 2013). Computing the similarity of graphs is relatively more
complex. It is conducted by either graph monomorphism (Chan
et al.,, 2013) or isomorphism algorithms (Wang et al., 2009a), or by
translating a graph into a vector using algorithms such as random
walk with restart (Chae et al., 2013).

Our birthmark is a set composed of key-value pairs, thus simi-
larity calculation methods such as Cosine distance, Jaccard index,
Dice coefficient and Containment can be used. Since these four
metrics all have ever been used for computing birthmark similarity
in previous studies, we implement all of them in our prototype for
better comparison against existing works.

Given two TreSBs pp={(k{,v1),---,(kn,vn)} and gqp=
{(k/1).+ (K, v;n)} let U = kSet(pg) UkSet(qz). We con-

vert set U to vector U = <k/{,-~- k

1
U]

order to the elements in U. Let vector pg=(aj.a. - .qy)).
where

a = Vi, ~l.f~k;/ € kSet(pB)
"7]0.7Tif7k} ¢ kSet (pg)

Likewise we define g = (b1, bz, -+, by)). The four metrics that
quantify the similarities between pi and gz are defined as:

> by assigning an arbitrary

Ex — Cosine(ps. q5) = M x 0,

Ps ‘TL‘
Ex — Jaccard(pg. q5) = % x 0,
Ex — Dice(pg, qs) = IZD‘:\TIZ?I x 0,
Ex — Containment (pg, qz) = % x ¢
where
min(15)3) fTB)
max(ps|. |as)

and
|p5| = V Zaiegg a, |a5] = Zbieq; b

The similarity of two TreSBs s

Sim(pg. q5) = simc(ps. 4s). where
Ex — Jaccard, Ex — Dice, Ex — Containment }.

represented by
c € {Ex — Cosine,

3.2. Plagiarism detection

The purpose of extracting birthmarks and calculating their sim-
ilarity is to eventually determine whether there exists plagiarism.
False negatives are possible due to sophisticated code obfuscation
techniques that camouflage stolen software. One of our goals is to
make our approach resilient to these techniques and tools. False
positives, on the other hand, are also possible, even though ex-
ecutions faithfully represent program behavior under a particular
input vector. For example, two independently developed programs
adopting standard error-handling subroutines may exhibit identi-
cal behavior under error-inducing inputs. In order to alleviate this
problem, multiple similarity scores are computed for birthmarks
obtained under multiple inputs, and the average of the scores is
used to decide plagiarism.

Let p and q be the plaintiff and defendant programs, re-
spectively. Given a set of inputs {I;, I, ---, I} to drive
the execution of the programs, we obtain n pair of TreSBs
{(ps,.45,). (P5,.485,). -+ . (PB,- 45,)} . The similarity score
between program p and ¢ is calculated by Sim(p,q) =

n
> sim(pg,.qs,)/n , whose value is between 0 and 1. The ex-
i=1

istence of plagiarism between p and q is then decided according
to the average similarity score and a predefined threshold ¢ as
follows:

>1 —& positive : qisacopyof p
< & negative : qisnotacopyof p (1)
otherwise inconclusive

sim(p, q) =

3.3. Implementation

Fig. 2 gives an overview of our TreSB based birthmarking tool,
where plaintiff and defendant represent the original program and
the program suspected of plagiarism, respectively. The tool consists
of several modules. The first module, TreTracer, is implemented
as a PIN (Luk et al., 2005) plugin to monitors program executions.
It recognizes and records the thread-related system calls by instru-
menting call sites dynamically. Table 1 lists the 65 thread-related
system calls of Linux kernel v3.2, on which platform we evaluate
the effectiveness of the TreSB method. The output of this module
is a thread-related system call sequence under a particular input
vector. Each record in the sequence consists of a system call num-
ber and its corresponding system call name, and the return value
during the execution.

The raw sequences extracted by the TreTracer are not ap-
propriate to be directly used for birthmark generation. Since failed
calls do not affect the behavior characteristics of a program (Wang
et al., 2009a; Tian et al., 2014b; Wang et al., 2009b), we treat them
as noise and delete them from the sequences. This is accomplished
by checking the return value of each record. Also, in order to fur-
ther reduce the impact of thread scheduling as well as other ran-
dom factors such as os-state related operations, each program is
executed multiple times with the same input. We then select two
most similar sequences for further analysis. These tasks are accom-
plished by an optimization module.

The birthmark generator obtains TreSBs from the thread-related
system call sequences passed from the optimizer. In the similarity
calculator, scores are computed between the birthmarks of plaintiff
and defendant programs with respect to each of the four similarity
metrics as described in Section 3.1. Finally a decision is made using
Eq. 1, where a default value of ¢ = 0.3 is adopted. However, users

https://www.researchgate.net/publication/277641613_Program_Characterization_Using_Runtime_Values_and_Its_Application_to_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262426534_Software_plagiarism_detection_A_graph-based_approach?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262321614_A_first_step_towards_algorithm_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/260299626_Heap_Graph_Based_Software_Theft_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/260299626_Heap_Graph_Based_Software_Theft_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/251973586_A_software_birthmark_based_on_weighted_k-gram?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/251973586_A_software_birthmark_based_on_weighted_k-gram?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/222763747_A_static_API_birthmark_for_Windows_binary_executables?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/222763747_A_static_API_birthmark_for_Windows_binary_executables?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221554444_Value-based_program_characterization_and_its_application_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221554444_Value-based_program_characterization_and_its_application_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220999307_K-gram_based_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220752268_9_8_Pin_Building_Customized_Program_Analysis_Tools_with_Dynamic_Instrumentation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

140 Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148

Plaintiff and . . .
.. Birthmark Similarit Decision
Defendant »| TreTracer —» Optimizer > M=
Generator Calculator Maker
Fig. 2. Overview of the TreSB based software plagiarism detection tool.
Table 2
Benchmark programs.
Name Size(kb) Version #Ver = Name Size(kb) Version #Ver Name Size(kb) Version #Ver
pigz 294 23 21 chromium 80,588 28.0.1500.71 1 SOR 593.3 JavaG1.0 44
Ibzip 1133 21 1 dillo 610.9 3.0.2 1 blackschole 12.5 Parsec3.0 2
Irzip 219.2 0.608 1 Dooble 364.4 0.07 1 bodytrack 647.5 Parsec3.0 2
pbzip2 67.4 11.6 1 epiphany 810.9 341 1 fludanimate 46.4 Parsec3.0 2
plzip 51 0.7 1 firefox 59,904 24.0 1 canneal 414.7 Parsec3.0 2
rar 511.8 5.0 1 konqueror 920.1 4.8.5 1 dedup 127.2 Parsec3.0 2
cmus 271.6 243 1 luakit 153.4 d83cc7e 1 ferret 2,150 Parsec3.0 2
mocp 384 25.0 1 midori 347.6 04.3 1 freqmine 2276 Parsec3.0 2
mp3blaster 265.8 325 1 seaMonkey 760.9 2.21 1 streamcluster ~ 102.7 Parsec3.0 2
mplayer 4,300 134540 1 Crypt 518.1 JavaG1.0 43 swaption 94 Parsec3.0 2
SOX 55.2 14.3.2 1 Series 593.3 JavaG1.0 43 X264 896.3 Parsec3.0 2
arora 1,331 0.11 1 SparseMat 593.3 JavaG1.0 43
can adjust its value depending on how strong the plagiarism evi- dedup, ferret, fregmine, streamcluster,

dence is desired. A & value between 0.15 and 0.35 has been used
in prior work (Choi et al., 2009; Schuler et al., 2007; Tian et al.,
2014b; Chae et al., 2015).

4. Experiments and evaluation

A high quality birthmark must exhibit low ratio of incorrect
classifications for a certain e. This can be quantified by the re-
silience and credibility properties (Myles and Collberg, 2005; Choi
et al., 2009). In order to demonstrate the merit of our birthmarking
technique, we center our empirical study on the two properties.

Property 1: Resilience. Let p be a program and q be a copy of p
generated by applying semantics-preserving code transformations
7. A birthmark is resilient to t if sim(pg,qg) > 1 —¢.

Property 2: Credibility. Let p and g be independently developed
programs that may accomplish the same task. A birthmark is cred-
ible if it can differentiate the two programs, that is sim(pg, qp) < €.

4.1. Experimental setup

We have conducted extensive experiments for evaluating the
effectiveness of our method on an open benchmark established
by Tian et al. (Tian et al., 2014b). Table 2 lists basic information
about the benchmark. Column #Ver gives the number of versions
of each program including the original program and its obfuscated
versions. Column Size lists the number of kilobytes of the largest
version, with its version number listed in Column Version. In the
following we summarize our testing environment.

o The benchmark consists of 234 versions of 35 mature multi-
threaded software implemented in C or Java, including:

e six compression/decompression software: pigz, lbzip,

lrzip, pbzip2, plzip and rar.

« five audio players: cmus, mocp, mp3blaster, mplayer

and sox.

o ten web browsers: arora, chromium, dillo, dooble,
epiphany, firefox, konqueror, luakit, midori and
seaMonkey.
four Java programs from the JavaG benchmark: Crypt,
Series, SparseMat and SOR.

e ten programs from the PARSEC 3.0 benchmark:
blackschole, bodytrack, fludanimate, canneal,

swaption, x264.

We evaluate the resilience of TreSB against relatively weak ob-

fuscations provided by two different compilers gcc and 11vm

with various optimization levels.

o We evaluate the resilience of TreSB against strong obfuscations
implemented in special obfuscators, including Sandmark,
Zelix KlassMaster, Allatori, Dash0O, Jshrink,
ProGuard and RetroGuard.

o We evaluate the resilience of TreSB against packing tool UPX
which can obfuscate binaries.

o We evaluate the credibility of TreSB with independently devel-
oped programs.

o We compare the overall performance of the TreSB method with
two latest thread-aware birthmarks SCSSBg4 and SCSSBgs (Tian
et al., 2014b), as well as the traditional birthmark SCSSB (Wang
et al., 2009b), with respect to three widely used metrics includ-
ing URC, F-Measure, and MCC.

o We propose another birthmark called TreCxtB that also exploits
thread-related system calls, and compare it against TreSB.

It should be noted that, with all other factors the same, differ-
ent values of k leads to different TreSBs. Fortunately, as it has been
confirmed in previous papers (Tian et al., 2013; 2015; Wang et al.,
2009a; Schuler et al., 2007) where k-grams are also used to gen-
erate birthmarks, setting the value of k to 4 or 5 is a proper com-
promise between accuracy and efficiency. In our evaluation we set
k =5 as adopted in (Tian et al., 2014b) and (Wang et al., 2009b),
since they are the works that we mainly compare with. As dis-
cussed in Section 3.2, programs are executed multiple times un-
der different inputs. However, we always give the same inputs to
the plaintiff and defendant programs. In our experiments, when-
ever available, we utilize the inputs that are distributed with the
benchmarks. For example, eighteen testing audio, image and text
files that are distributed with pigz are used to drive the execu-
tions of pigz and its obfuscated versions in our experiments. For
other programs such as the ten web browsers, we feed them with
multiple websites such as https://en.wikipedia.org/wiki/Plagiarism.

4.2. Validation of resilience property

4.2.1. Resilience to different compilers and optimization levels
Stolen software is often compiled with different compilers
or compiler optimization levels to evade detection. In this ex-

https://en.wikipedia.org/wiki/Plagiarism
https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/222763747_A_static_API_birthmark_for_Windows_binary_executables?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/222763747_A_static_API_birthmark_for_Windows_binary_executables?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220999307_K-gram_based_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148 141

Table 3
Statistical differences between pigz versions generated with different compil-
ers and optimization levels.

Size(Kb) #Functions #Instructions #Blocks #Calls
Max. 295 415 22178 3734 2376
Min. 84 342 13860 2672 1031
Avg. 151.75 380.25 16269 3068.9 1206.8
Stdev. 60.53 234 2679 286.58 280.9

[0<0.6 @[0.6,0.7) B[0.7,0.8) @[0.8,0.9) §[0.9,1]]

Ex-Containment (777NN
Ex-Dice 1ZANNNNNRINNINRRNNNIRRNNNNNNY
Ex-Jaceard | ZZZZONNNNNNNNNNNNNNNNNNNNNNNNN
AN

1 1 1 1 1 1 1 L J

Ex-Cosine

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Fig. 3. Similarity scores between pigz versions generated with different compilers
and optimization levels.

periment, we choose the multithreaded compression software
pigz-2.3 as the experimental subject. Compiled with two com-
pilers 11vm3.2 and gcc4.6. 3, along with multiple optimization
levels (-00, -01, -02 -03 and -0s) and the debug option (-g)
switched on or off, we obtain 20 different executables. The sta-
tistical characteristics of the 20 binaries, obtained by using the
disassembler IDA Pro, are summarized in Table 3. The table gives
the statistical differences on the size, the number of functions, the
number of instructions, the number of basic blocks and the num-
ber of function calls. The data indicate that even weak code trans-
formations can make significant differences to the produced bina-
ries.

Since the 20 binaries are obtained from the same source code,
our approach is resilient to these weak code transformations if
the similarity scores are high, indicating the existence of pla-
giarism. Fig. 3 illustrates the distribution graph of the similarity
scores calculated between the birthmarks of the 20 pigz binaries,
where the vertical axis represents the metrics adopted for simi-
larity computation, and the horizontal axis represents the percent-
age of birthmark pairs belonging to each range as specified in the
legend. It can be observed that the similarity scores are all above
0.8, except for Ex-Jaccard, and the majority are above 0.9. Even
for Ex-Jaccard, only a tiny fraction of the similarity scores are be-
tween 0.7-0.8 and all others are above 0.8. For a threshold value
of 0.3, our technique will claim the existence of plagiarism for all
the experiments. The experimental results indicate that TreSB ex-
hibits strong resilience against the obfuscations caused by different
compilers and optimization levels.

4.2.2. Resilience to advanced obfuscation tools

In this group of experiments, we evaluate the resilience of
TreSB against advanced obfuscation techniques available in sophis-
ticated tools. Specifically, we conduct experiments on the 165 ob-
fuscated versions of the four programs from the JavaG Benchmark,
including Crypt, Series, SparseMat and SOR. These 165° ver-

3 Note that with our experimental setup, there should be 180 obfuscated versions
if all the obfuscations are successfully applied. Yet some of the obfuscations fail
to transform the programs or fail to transform them into semantically equivalent
executables.

[0<0.6 0[0.6,0.7) @[0.7,0.8) @[0.8,0.9) 8[0.9,1]]

Ex-Connment. 77 AT Y

Ex-Dice |[ZANN

AR
Ex-Jaccard | [77ZANNNNNNNNNNNNNNNNNNNRNNNNNNNNNGN

[77NN

Ex-Cosine

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Fig. 4. Similarity scores between a program and its obfuscated versions.

sions are obtained by either applying the 39 obfuscation tech-
niques implemented in the obfuscation tool SandMark (Collberg
et al., 2003) to each program one at a time, or by apply-
ing multiple obfuscation techniques implemented in six com-
mercial and open source obfuscation tools, including Zelix
KlassMaster,” Allatori,” Dash0,° JShrink,’ ProGuard?
and RetroGuard,® simultaneously to a single program, on the
premise of ensuring semantics equivalence between each original
and the transformed programs. Semantic equivalence is confirmed
via empirical study rather than theoretical proof. We consider a
transformed program is equivalent to the original one if they pro-
duce the same outputs in our experiments.

The similarity scores are calculated between the original pro-
gram and one of its obfuscated versions. Fig. 4 gives the similarity
score distribution with the vertical and horizontal axes indicating
the same meaning as in Fig. 3. It can be observed that the major-
ity scores locate in the 0.7-above region. Yet as indicated by the
white bars in the figure, there exist some similarity scores that
are relatively low. We checked the experimental data, and found
that these low scores all happened between each program and its
Allatori-obfuscated version. It seems that TreSB is susceptible
to the obfuscation produced by Allatori. By manually investi-
gating the recorded execution traces, we find that an extra thread
is added in the Allatori-obfuscated version, compared with its
original version during runtime. The new thread decrypts strings
that are encrypted during the obfuscation process of Allatori,
which introduces extra thread-related system calls. For example,
NR_waitpid and NR_pipe, which do not appear in the execution of
the original version, appear in the trace of Allatroi-obfuscated
Crypt. We anticipate an approach to defeat our algorithm is to in-
troduce new threads that emit thread-related system calls to dis-
guise plagiarism. To address this issue, we can add a preprocess-
ing module. After firstly projecting a trace on individual threads,
the module performs maximal matching among all subtraces of
the plaintiff and defendant to detect unmatched subtraces. The un-
matched traces are very likely to be the noise introduced by the
obfuscation and thus can be removed. Fig. 5 gives the distribution
graph after performing such trace filtering. It can be observed that
all scores are above 0.6. It indicates that TreSB is resilient to such
anticipated obfuscation techniques.

4 http://www.zelix.com/klassmaster.

5 http://www.allatori.com.

6 https://www.preemptive.com/products/dasho.

7 https://www.e-t.com/jshrink.html.

8 http://proguard.sourceforge.net.

9 http://java-source.net/open-source/obfuscators/retroguard.

http://www.zelix.com/klassmaster
http://www.allatori.com
https://www.preemptive.com/products/dasho
https://www.e-t.com/jshrink.html
http://proguard.sourceforge.net
http://java-source.net/open-source/obfuscators/retroguard
https://www.researchgate.net/publication/3437494_SANDMark-A_tool_for_software_protection_research?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/3437494_SANDMark-A_tool_for_software_protection_research?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

142 Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148

| 0<0.6 0[0.6,0.7) B[0.7,0.8) @[0.8,0.9) 8[0.9,1]]

Ex-Containment [
Ex-Dice
Ex-Jaccard

Ex-Cosine

0 10 20 30 40 50 60 70 80 90 100

Percentage (%)

Fig. 5. Similarity scores with trace filtering performed.

[0<0.6 @[0.6,0.7) @[0.7,0.8) B[0.8,0.9) 8[0.9,1]]

Ex-Containment

Ex-Dice

Ex-Jaccard

Ex-Cosine

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Fig. 6. Similarity scores between a program and its UPX-packed versions.

4.2.3. Resilience to packing tools

The packing tools or packers (Roundy and Miller, 2013; Guo
et al.,, 2008; Kim et al., 2010), which implement various binary ob-
fuscation techniques as well as compression and encryption tech-
niques, are widely used to hide malicious malware or to protect
proprietary software from illegal modification and cracking. Such
techniques may be used to evade plagiarism detection. These tools
can defeat static birthmarks as they significantly modify the origi-
nal programs.

In this section, resilience of TreSB is evaluated on the bi-
naries in the benchmark that are processed with packing tech-
niques, including the previously used pigz, Crypt, Series,
SparseMat, SOR as well as 10 other multithreaded programs
blackschole, bodytrack, fludanimate, canneal, dedup,
ferret, freqmine, streamcluster, swaption and x264.
These programs all have versions packed by UPX,!? the only pub-
licly available packing tool for the ELF-format (executable file for-
mat under Linux).

Fig. 6 depicts the distribution of the similarity scores calcu-
lated between birthmarks of the original programs and their cor-
responding UPX-packed versions. It can be observed the majority
of the scores are above 0.7 and all scores are above 0.6. For a de-
fault threshold value of 0.3, there are very few cases, when adopt-
ing Ex-Jaccard and Ex-Cosine metrics, TreSB is uncertain about the
existence of plagiarism.

4.3. Validation of credibility property
Credibility of TreSB is evaluated by its capability of distinguish-

ing independently developed programs. Three widely used types of
software are selected as our experimental subjects, including six

10 http://upx.sourceforge.net/

[0[0,0.1) B[0.1,0.2) B[0.2,0.3) @[0.3,0.4) >=0.4)

Ex-Containment |

Ex-Dice |

Ex-Jaccard |

Ex-Cosine |

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Fig. 7. Similarity scores for software in different categories.

|0[0,0.1) B[0.1,0.2) @[0.2,0.3) @[0.3,0.4) B >=0.4)

Ex-Containment 2
Ex-Dice - A
Ex-Jaccard - E
Ex-Cosine - l

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Fig. 8. Similarity scores for software in the same category.

Table 4
Credibility evaluation using ten web browsers.

Max Avg Avg+ Avg-

Ex-Cosine 0.584 0.068 0.178 0.023
Ex-Jaccard 0.373 0.030 0.092 0.008
Ex-Dice 0509 0.049 0.142 0.015

Ex-Contaiment 0.512 0.055 0.144 0.024

multithreaded compression software (1bzip2, lrzip, pbzip2,
pigz, plzip and rar), ten web browsers (arora, chromium,
dillo, Dooble, epiphany, firefox, konqueror, luakit,
midori and seaMonkey), and five audio players (cmus, mocp,
mp3blaster, mplayer and sox).

4.3.1. Distinguishing programs in different categories

In this group of experiments, similarity scores between the
compression programs and audio players are computed. Since the
comparison is between software that accomplish totally different
tasks, we expect very low similarities. As shown in Fig. 7, the re-
sults are as expected. All the similarity scores are below 0.1, indi-
cating good credibility of TreSB in distinguishing programs without
much in common.

4.3.2. Distinguishing programs in same categories

Distinguishing programs in the same category is more challeng-
ing because they overlap greatly in their functionality. Fig. 8 de-
picts the distribution of the similarity scores calculated between
the ten web browsers. It can be observed that the majority of the
scores are below 0.1, indicating good capability of TreSB in distin-
guishing similar but independently developed programs. However,
there exist a few cases where the similarity scores are above 0.3,
which shows that TreSB is unsure about whether plagiarism exists.

In order to better interpreting the data, Table 4 gives the max
and average similarity scores in the first two columns after the

http://upx.sourceforge.net/
https://www.researchgate.net/publication/262233541_Binary-Code_Obfuscations_in_Prevalent_Packer_Tools?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/232625897_Design_and_Performance_Evaluation_of_Binary_Code_Packing_for_Protecting_Embedded_Software_against_Reverse_Engineering?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221427586_A_Study_of_the_Packer_Problem_and_Its_Solutions?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221427586_A_Study_of_the_Packer_Problem_and_Its_Solutions?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148 143

names of the matrices. Consistent with the distribution graph,
while the average scores are well below 0.1, the maximum similar-
ity scores are all above 0.25. After careful examination of the pro-
grams we have found that some of the browsers share the same
layout engine. Specifically, five of the browsers (arora, Dooble,
epiphany, luakit and midori) are Webkit-based while the
others utilize different layout engines. Column Avg+ lists the aver-
age similarity scores between those five Webkit-based browsers,
and Column Avg- gives the average scores between the Webkit-
based and non-Webkit-based browsers. As expected, the values in
Column Avg+ are 6 to 10 times bigger than the values in Column
Avg-.

Since the goal of TreSB is to detect whole program plagiarism,
we believe the experimental results show strong credibility for
real-world applications where certain libraries are shared. If there
exist trivial programs that simply calls the same third-party func-
tions, it is hard to give a conclusive judgment even with manual
examination.

4.4. Comparing with other birthmarks

This section compares the performance of TreSB against two
birthmarks SCSSBss and SCSSBgs (Tian et al., 2014b) that adapt
SCSSB (Wang et al.,, 2009b) for multithreaded programs, as well
as the original SCSSB. All the programs from Section 4.2 to
Section 4.3 are taken as the experimental subjects.

4.4.1. Performance evaluation with respect to URC

As discussed earlier, resilience and credibility reflect from dif-
ferent aspects the qualities of a birthmark. URC (Union of Re-
silience and Credibility) (Xie et al., 2010), defined below, is a metric
that considers both aspects.

RxC
R+C

In the equation, R represents the ratio of correctly classified pairs
where plagiarism exists and C represents the ratio of correctly clas-
sified pairs where plagiarism does not exist. The value of URC
ranges from O to 1, with higher value indicating a better birthmark.
Let EP be the set of pairs of programs such that VY(p, q) € EP, pla-
giarism indeed exists between q and p, and JP be the set of pairs
such that Y(p, q) € JP, a plagiarism detection method believes that
plagiarism exists between g and p. Similarly, let EI to be the set of
pairs such that VY(p, q) € EI, q and p are independent, and JI be the
set of pairs that are deemed independent by a plagiarism detection
method. R and C are defined as:

|[EPNJP| _ |[EIN]JI|
7|EP| and C= IEl]

As indicated by Eq. 1, the detection result relies on the value
of threshold e. Therefore in the experiments we vary the value
of ¢ from 0 to 0.5. Note that ¢ cannot be greater than 0.5, oth-
erwise plagiarism can be claimed to be existing and non-existing
at the same time. Fig. 9 depicts the experimental results, where
each subfigure corresponds to the specific metric utilized for sim-
ilarity computation. As indicated by the pink lines, TreSB always
performs better than the other three birthmark methods.

URC = 2 x

(2)

R =

(3)

4.4.2. Evaluation with F-measure and MCC

Eq. 1 indicates that the birthmark based plagiarism detection
give three-value results. If the similarity score of two birthmarks is
between ¢ and 1 — ¢, there is no definite answer whether plagia-
rism exists. The inconclusiveness reflects the nature of birthmark
based techniques, which are mostly used for collecting evidence
rather than proving or disproving the existence of plagiarism. Such
three-value outcome also explains the reason that URC gives better

Ex-Containment Metric Ex-Cosine Metric

1 1 y
0.9 0.9
0.8 0.8
0.7 0.7
So6 Sos
T g
>05 >05
o (o}
%04 %04
03 —o—TreSB 03 —o—TreSB
0-2 —o— SCSSBg, 0-2 —o— SCSSBg,
) —o— SCSSBSS) —o— SCSSBSS
01 —8—5CSSB 01 —5—5CSSB
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold) Threshold)
; Ex-Dice Metric ; Ex-Jaccard Metric
0.9 0.9
0.8 0.8
0.7F 0.7
Sosf Sosf
s 205
(S o
5 04f S04
03 —o—TreSB = 03 —o—TreSB
0-2 I —— SCSSBy, 0-2 —— SCSSBy,
' —o— SCSSBgg “I —o—SCSSBgg
01 —5—5CSSB 01 —5—5CSSB
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold) Threshold)

Fig. 9. Performance evaluation with respect to the URC metric.

results with higher value of ¢ in Fig. 9. This is because URC mainly
measures the rate of correct classifications, where inconclusiveness
is considered as incorrect classification. As the value of € increases,
the chance of inconclusiveness becomes smaller, leading to less in-
correct classifications.

To address the problem, we further compare the birth-
mark methods against two other metrics, F-Measure and MCC
(Matthews Correlation Coefficient) (Matthews, 1975), that are
widely used in the areas of information retrieval and machine
learning. However, these two metrics cannot be directly applied as
they mainly measure binary classifications. Thus in the following,
we revise the definition of sim by removing the inconclusiveness:

' _J=e qisacopyofp
sim(ps. qs) = {< e qisnotacopyofp W

F-Measure is based on the weighted harmonic mean of Preci-
sion and Recall:
o, 2 x Precision x Recall (5)

©aSUEe = " precision + Recall
where Precision and Recall are defined as following:
|[EP NP |[EPNJP|
———— and Recall= ————

P |EP]

MCC, defined below, is regarded as one of the best metrics that
evaluate true and false positives and negatives by a single value.

TP x TN — FP x FN
(6)

°= /(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

Precision =

where TP, TN, FP and FN are the number of true positives, true neg-
atives, false positives and false negatives, respectively. They can be
computed with the following formulas:

TP=|EPNJP|; FN=|EPNJI|

FP=|EINJP|; TN =|EIn]JI|

The values of F-Measure are between 0 and 1, and MCC be-
tween -1 and 1, with closing to 1 indicating better quality. The
experimental results are depicted in Fig. 10 . The left four sub-
figures give results of F-Measure and the right four subfigures
show the results of MCC. Note that the values between -1 and 0
never appear in our experiments so the scale in the figure for MCC
is between 0 and 1. It can be observed that TreSB almost always

https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221675867_Comparison_of_the_Predicted_and_Observed_Secondary_Structure_of_T4_Phage_Lysozime?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

144 Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148

Ex-Containment Metric
‘ —o— TreSB —v— SCSSBg, —o— SCSSBy —a— SCSSE‘

Ex-Cosine Metric
‘ —— TroSB —— SCSSBg, —o— SCSSB; —a— SCSSB‘

Ex-Containment Metric Ex-Cosine Metric

[TrosB - SCSSBy, o~ SCSSByg —o- 50558

‘ —— TroSB —— SCSSBg, —o— SCSSB; —a— SCSSE‘

— 1 = 1 =
09 X X & oF AP
t T B] s
So7 {4 Zo7 507 \ 07
08 |1 Zos 206 \] 506
505 \ 505 505 X 5 03]
§o4 11 §oa Qo4 |1 Qo4
Z03 l Fos =03 1 Zos
“o2 b “o2 02 \ 02
01 i 01 01 i 0.1
0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Threshold ¢) Threshold ¢) Threshold ¢) Threshold ¢)
Ex-Dice Metric Ex-Jaccard Metric Ex-Dice Metric Ex-Jaccard Metric
[+ TreSB —+— SCSSBg, —o— SCSSBgg —— scsss[[+ TreSB —— SCSSBg, —o— SCSSBy; —&— scsss[—— TreSB —v— SCSSBg, —o— SCSSByg —a— SCSSB —o— TreSB —v— SCSSBy, —o— SCSSByg —8— scsss[
1 1 — 1 1
0| 0 09 o 09 o = 09l
» 08 \ , 08 /"?‘ g\ 08 0.8] X
So7 Sor » 07 » 07
206 \ 206 ' 206 206
505 \ Sos \ 508 205
§ 04 11 §os \ Qo4 {1 Cos t
=03 {1 Zo3 =03 \{ =03 \
Y02 W %oz \ 02 \ 02 \
04 : 04 04 b 041 |
0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Threshold ¢) Threshold ¢) Threshold ¢) Threshold ¢)
Fig. 10. Performance evaluation with respect to F-Measure and MCC.
Table 5
Comparison using AUC values.
URC F-Measure MCC
SCSSB SA SS TreSB SCSSB SA SS TreSB SCSSB SA SS TreSB
Ex-Containment 0.618 0.693 0.709 0.863 0.802 0.847 0.853 0.942 0.704 0.737 0.753 0.868
Ex-Cosine 0.776 0.816 0.793 0.857 0.919 0.933 0.924 0.938 0.814 0.837 0.827 0.861
Ex-Dice 0.619 0.694 0.71 0.843 0.802 0.847 0.853 0.927 0.705 0.74 0.754 0.84
Ex-Jaccard 0.412 0.564 0.591 0.827 0.691 0.768 0.784 0.912 0.602 0.665 0.687 0.818
PerGain (%) - 17/37 19/43 47/101 - 6/11 7/13 17/32 - 6/10 7/14 21/36

performs better than all the other birthmarks across the whole x-
axis.

4.4.3. Comparing birthmarks with AUC analysis

For more specific and intuitional comparison, we compute AUC
(Area Under the Curve) for each birthmarking method with respect
to the URC, F-Measure and MCC metrics. Note that larger value
of AUC indicate better birthmark quality. The experimental results
are summarized in the Table 5, where SA and SS denote birthmarks
SCSSBs4 and SCSSBgs, respectively. As it shows, the AUC values of
TreSB are all larger than that of the other birthmarks’.

We quantify the performance gains by taking the original SCSSB
as baseline. That is, we compute the improvement of each thread-
aware birthmark against SCSSB with respect to the same similarity
metric and the same performance evaluation metric using the fol-
lowing equation:

AUCtub — AUCscssb
AUCscssb

where AUC,,, and AUC,.,, represent the AUC value of a thread-
aware birthmark and SCSSB, respectively. Note that both AUCy,
and AUC,., in the equation are relative. Their values vary with
respect to different similarity metrics and performance evaluation
metrics. For example, the AUC,., value with respect to Ex-Cosine
similarity and URC metric is 0.776, while its value with respect to
Ex-Dice similarity and URC metric is 0.619. Therefore, the corre-
sponding PerGain values for TreSB are:
0.857-0.776 0.843-0.619
0.776 0.619

respectively. The last row in Table 5 gives the average and maxi-
mal performance gains of each birthmark against SCSSB. It can be
observed TreSB is significantly better that other birthmarks.

PerGain = x 100%

x 100% = 10%, and x 100% = 36%

4.5. Effectiveness of the sequence selection

As mentioned in Section 3.3, we conduct an optimization by
pre-selecting two most similar sequences from plaintiff and de-

fendant programs to reduce the randomness of thread interleav-
ing. To evaluate the necessity of this optimization, in the first four
rows of Table 6 we give the AUC values of comparisons between
birthmarks generated from two most dissimilar sequences. It can
be observed the data are not as good as those in Table 5. In or-
der to quantify the performance degradation we use the following
equation and give the results in the last row PerDegr.
> AUGop — AUG00pt

simMetrics

Y AUCox

simMetrics

PerDegr = x 100%

We can see that the performance of all birthmark methods
are improved after the optimization, indicating the necessity and
benefit of applying the optimization. It can also be observed that
the performance degradation of SCSSBs are more significant than
that of thread-aware birthmarks, which correctly reflect the signif-
icant impact of thread interleaving on traditional SCSSB and the
fact that thread-aware birthmarks are needed for multithreaded
programs.

4.6. Alternative approach

So far, we have discussed and evaluated TreSB extracted from a
sequence composed of thread-related system calls. Besides TreSB,
there are other ways to extract birthmarks based on thread-related
system calls. In this section, we discuss an alternative birthmark
called TreCxtB (short for thread-related system call with context
birthmark) that considers the context of individual thread-related
system calls.

4.6.1. Thread-related system call with context birthmark

Fig. 11 depicts the context of a thread-related system call in a
trace, which includes the system calls immediately before and after
it. Formally, given an execution trace trace(p,I) = (1,52, ,Sn)
consisted of system calls recorded during the runtime of pro-
gram p under input I, a subsequence tos(p,I) = (e1,€3.---,em)

Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148 145

Table 6
Effectiveness of sequence selection.
URC F-Measure MCC
SCSSB SA SS TreSB SCSSB SA SS TreSB SCSSB SA SS TreSB
Ex-Containment 0.344 0.614 0.635 0.753 0659 0.799 0.809 0.874 0.577 0.711 0.723 0.761
Ex-Cosine 0.74 0.794 0.792 0.767 0876 0923 0.908 0.881 0.769 0.83 0.817 0.781
Ex-Dice 0.343 0.614 0.631 0.778 0.659 0798 0.809 0.888 0.578 0712 0.721 0.79
Ex-Jaccard 0.098 0.4 0.465 0.734 0503 0.687 0722 0.859 0436 0.604 0636 075
PerDegr (%) 371 125 10.0 10.6 16.1 5.5 49 5.8 16.5 41 41 9.0
context(s;) =<k-prefix(s,),s; k-suffix(s;)> 4 Ex-Containment Metric] Ex-Cosine Metric
context(s;) K-SUffix () =<Sjs 1, 41> 09 N
____________ . ¢)=<q. o 0.8 e *
I(k'Preﬁx(Sj) k-suﬁix(s,))| keprefix(s) = <spi- 51> > o7} e s e
A e 3 06l *
s; is a thread-related system call trace(p.]) § g'i ° * *
g oal ¢ * o TreCxtB,, o TreCxtB,,
Fig. 11. Context of a thread-related system call. % 0al * o TresB, o TresB,
02k * -+ TreCxtB -+ TreCxtB,
0.1 —+— TreSB, —+— TreSB,

consisted of just thread-related system calls can be obtained. For
each thread-related system call e; in tos(p, I), we define its k-prefix
as the nearest k system calls executed preceding e; in trace(p, I),
and its k-suffix as the nearest k system calls executed succeeding e;
in trace(p, I). The context of e; is then defined as the sequence that
concatenates the k-prefix, e;, and the k-suffix. Similarly to TreSB,
TreCxtB is defined as the key-value pair set consists of all unique

Algorithm 1 Extracting TreCxtB.
Input:
trace: an execution trace consisted of system calls
k: the scope for determining prefix and suffix
Output:
cxtg: the birthmark TreCxtB, which is a key-value pair set
1: cxtp < ()
2: for each system call s in trace do
3: if s is a thread-related system call then
4 k — pre = prefix(s, k)
5: k —suf =suf fix(s, k) > Obtain the nearest k system
calls preceding and succeeding s

6: cxt = concat(k — pre, s,k —suf) 1> Generate the context
for s

7: if cxtp.keyset.contains(cxt) then

8: + + cxtp.getkey(cxt) > Update the value of key cxt in
CcXtp

9: else

10: cxtp < cxtg @ (cxt, 1) > Add the new key-value pair to
CcXtp

11: end if

12: end if

13: end for

context and their corresponding frequencies. Algorithm 1 gives the
pseudo-code on TreCxtB generation.

4.6.2. Performance evaluation of TreCxtB

Same as TreSB, we evaluate the performance of TreCxtB with
respect to the three performance metrics URC, F-Measure and
MCC, respectively. Note that TreCxtB depends on a factor k that de-
termines the range of its contexts. Table 7 summarizes the AUC
values as well as the Average/Maximum PerGain values of TreCxtB
with different k values. As it shows, TreCxtB exhibits the best per-
formance (the largest average and maximum PerGain values with
respect to all metrics among the tested k values) when k = 1. With
increasing k values, both the average and maximum PerGain values
with respect to either performance metric decrease. There is no

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5

Threshold ¢) Threshold ¢)
] Ex-Dice Metric 4 Ex-Jaccard Metric
4
09} 2 « b o
* * E:

08F
> o [}
% 0.7F * *
306 o
[$]
5 05 ° o
£oaf * o TreCxtB,, £o. o - TreCxtB,,
2oaf /" —o— TreSBy Zoat|/ —o— TreSB,,

0.2f - TreCxtB, 0.2t} - TreCxtB,

0.1 —+—TreSB 0.1 —+—TreSB,

0 0.050.1 015 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold €)

0 0.050.10.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold €)

Fig. 12. Comparing the resilience and credibility of TreCxtB and TreSB. We use
TreSBg and TreSB¢ to denote the R and C of TreSB, and use TreCxtBg and TreCxtBc
to denote the R and C of TreCxtB.

need to test more k values, as larger k makes two TreCxtB more
dissimilar, which decreases resilience while increases credibility of
TreCxtB. In other words, larger k leads to more false negatives but
less false positives. With birthmarking being a detecting technique
of suspected copies, false negative is more critical than false posi-
tive(Tian et al., 2015). Besides, larger k incurs more computational
cost. Thus k =1 is the best choice for TreCxtB.

As indicated by AUC and PerGain values in Table 7, when k =1
TreCxtB is significantly better than SCSSB and outperforms SCSSBs,
and SCSSBss. But it is no better than TreSB. We also consider R and
C as defined in Eq. 3. Fig. 12 illustrates the resilience (reflected by
R) and credibility (reflected by C) of TreCxtB and TreSB. From the
figures, we can see that the R curve of TreCxtB is below that of
TreSB, while the C curve of TreCxtB is occasionally above that of
TreSB. It indicates that TreSB is no better than TreCxtB in terms of
the resilience against semantics-preserving obfuscations. The main
shortcoming of TreCxtB lies in its credibility of distinguishing pro-
grams when there is no plagiarism.

5. Related work

In this section we discuss related work on birthmark based
software plagiarism detection. Since we target binaries, previous
researches assuming availability of source code are not discussed
here.

Static birthmark based plagiarism detection: Myles
et al. (Myles and Collberg, 2005) proposed k-gram based static
birthmarks, where sets of Java bytecode sequences of length k
are taken as the birthmarks. Although being more robust than
birthmarks proposed by Tamada (Tamada et al., 2004a), the birth-

https://www.researchgate.net/publication/282499587_Software_Plagiarism_Detection_with_Birthmarks_Based_on_Dynamic_Key_Instruction_Sequences?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220999307_K-gram_based_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2907828_Design_and_Evaluation_of_Birthmarks_for_Detecting_Theft_of_Java_Programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

146 Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148

Table 7
AUC values of TreCxtB.
k=1 k=2 k=3
URC F-Measure MCC URC F-Measure MCC URC F-Measure MCC
Ex-Containment 0.674 0.903 0.749 0.718 0.879 0.753 0.697 0.843 0.735
Ex-Cosine 0.782 0.924 0.81 0.775 0.897 0.799 0.724 0.858 0.772
Ex-Dice 0.726 0.903 0.773 0.756 0.879 0.774 0.706 0.845 0.752
Ex-Jaccard 0.748 0.883 0.767 0.667 0.826 0.724 0.551 0.766 0.675
PerGain (%) 27/82 13/28 11/27 25/62 9/20 9/20 13/34 4/11 5/12

marks were still vulnerable to code obfuscation attacks. A static
birthmark based on disassembled API calls from executables is put
forward by Seokwoo et al. (Choi et al., 2009), yet the requirement
for de-obfuscating binaries before applying their method is too
restrictive and thus reduces its availability. An obfuscation-resilient
method based on longest common subsequence of semantically
equivalent basic blocks was proposed (Luo et al., 2014). They
utilized symbolic execution to extract from basic blocks sym-
bolic formulas, whose pair-wise equivalence are compared via a
theorem prover. Being static analysis method, accuracy can not
be assured since it has difficulty in handling indirect branches.
There are also some works focusing on detecting plagiarism for
smartphone applications. DroidMOSS (Zhou et al., 2012) detects
plagiarism by applying fuzzing hashing on instruction sequences.
Yet simple obfuscations such as noise injection can invalidate the
method. ViewDroid (Zhang et al., 2014a) proposes the feature view
graph birthmark by capturing users’ navigation behaviors. But it’s
vulnerable to dummy view insertion and encryption attacks.

Dynamic birthmark based plagiarism detection: Myles
et al. (Myles and Collberg, 2004) suggested the whole program
path (WPP) birthmark generated by compressing a whole dynamic
control flow trace into a directed acyclic graph to uniquely identify
a program. Even with compression the method does not scale, and
it's susceptible to various loop transformations. Schuler (Schuler
et al., 2007) treated Java API call sequences at object level as
dynamic birthmarks for Java programs. Such approach gave better
performance than WPP birthmark, but they also pointed out that
their method was affected by thread scheduling. Wang et al. (Wang
et al., 2009b) proposed System Call Short Sequence birthmark (SC-
SSB), which treated the sets of k-length system call sequences as
birthmarks. As illustrated in this paper, although dynamic birth-
marks exhibit certain resilience to syntax modifications, they are
not suitable for plagiarism detection of multithreaded programs.

Thread aware birthmarks: There has been very few work that
target birthmark based plagiarism detection of multithreaded pro-
grams. To the best of our knowledge, SCSSBg4 and SCSSBgs pro-
posed by Tian et al. (Tian et al., 2014b) are the only two birth-
marks that consider the impact of thread scheduling. Their prin-
ciple was to extract birthmarks based on the events in individual
threads. Yet the assumption that events happened in each thread
is stable is not always true, as events happened in each thread
are variable due to the interactions between threads. In addition,
such isolated approach cannot catch the overall program behav-
ior, especially thread interactions that are a crucial component of
multithreaded programs. Therefore, although the method is able
to alleviate the impact of non-deterministic thread scheduling to
some extent, false negatives are not uncommon, especially when
the thread interplay is complex. In addition, their method of calcu-
lating maximum similarity score through bipartite graph matching
may lead to false positives, since scores calculated between inde-
pendent programs tends to be higher. As verified by our experi-
ments, our approach based on thread related system calls is supe-
rior in terms of both accuracy and efficiency.

6. Conclusion and future work

As multithreaded programming becomes increasingly more
popular, existing dynamic software plagiarism detection techniques
geared towards sequential programs are no longer sufficient. This
work fills the gap by proposing a new thread-aware birthmarking
technique. The primary contributions of this paper include the fol-
lowing:

o We proposed a new kind of thread-aware birthmark called
TreSB, which works efficiently for plagiarism detection of multi-
threaded programs. There has been very few work dealing with
the impact of thread scheduling on plagiarism detection.

* We implemented a tool and evaluated its effectiveness. The ex-
periments on 234 versions of 35 programs show that our ap-
proach is not only accurate in detecting plagiarism of multi-
threaded programs, but also resilient to most state-of-the-art
semantics-preserving obfuscation techniques.

o We compared TreSB against two latest and currently only ex-
isting thread-aware birthmarks SCSSBs4 and SCSSBgs. The com-
parison results with respect to three metrics including URC,
F-Measure, and MCC indicate our approach is superior.

o We suggested an alternative birthmark generating approach
called TreCxtB that also exploits thread-related system calls.
The experiments show that TreCxtB outperforms SCSSBs, and
SCSSBss.

In this paper, TreSB is mainly evaluated on the detection of
whole program plagiarism, where a complete program is copied
and disguised through code obfuscation techniques. In recent
years, whole program plagiarism of mobile apps has become a se-
rious problem. About 5 to 13% of apps in the third-party app mar-
kets are copied and redistributed from the official Android mar-
ket. We plan to conduct case studies for this domain. On the other
hand, while whole program plagiarism detection is very useful in
practice, there are also many cases that only part of a program
is copied, such as the web browser experiment where the We-
bkit layout engine is utilized in multiple browsers. We will explore
whether our approach can be adapted to detect partial plagiarisms.

To our best knowledge there do no exist obfuscation techniques
that particularly target multithreaded programs. However, it is in-
evitable that such obfuscations will surface once plagiarism detec-
tion techniques as TreSB are being used. In the future we plan
to investigate obfuscation techniques that can potentially defeat
thread-aware birthmarks. Based on our investigation we will con-
tinually optimize TreSB and design other thread-aware birthmarks
to defend against these obfuscations.

Acknowledgement
This work was supported by the National Natural Sci-
ence Foundation of China (91218301, 91418205, 61472318,

61428206), Key Project of the National Research Program of
China (2013BAK09B01), Ministry of Education Innovation Research

http://dx.doi.org/10.13039/501100001809
https://www.researchgate.net/publication/301428625_Semantics-based_obfuscation-resilient_binary_code_similarity_comparison_with_applications_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/241623856_Detecting_Repackaged_Smartphone_Applications_in_Third-Party_Android_Marketplaces?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/222763747_A_static_API_birthmark_for_Windows_binary_executables?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220905153_Detecting_Software_Theft_via_Whole_Program_Path_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148 147

Team (IRT13035), the Fundamental Research Funds for the Central
Universities, and the National Science Foundation (NSF) under
grant CCF-1500365. Any opinions, findings, and conclusions ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

References

Chae, D.-K., Ha, |., Kim, S.-W., Kang, B., Im, E.G., 2013. Software plagiarism de-
tection: a graph-based approach. In: Proceedings of the 22nd ACM Interna-
tional Conference on Information & Knowledge Management (CIKM '13). ACM,
pp. 1577-1580.

Chae, D.-K., Kim, S.-W., Cho, S.-]., Kim, Y., 2015. Effective and efficient detection of
software theft via dynamic api authority vectors. |. Syst. Softw. 110, 1-9.

Chan, PP, Hui, L.C., Yiu, S.-M., 2013. Heap graph based software theft detection. Inf.
Forensics Secur. IEEE Trans. 8 (1), 101-110.

Choi, S., Park, H., Lim, H.-i., Han, T,, 2009. A static api birthmark for windows binary
executables.]. Syst. Softw. 82 (5), 862-873.

Collberg, C., Myles, G., Huntwork, A., 2003. Sandmark-a tool for software protection
research. IEEE Secur. Privacy 1 (4), 40-49.

Cosma, G., Joy, M., 2012. An approach to source-code plagiarism detection and in-
vestigation using latent semantic analysis. Comput. IEEE Trans. 61 (3), 379-394.

Cui, H.,, Wu, |., Gallagher, |., Guo, H., Yang, |., 2011. Efficient deterministic multi-
threading through schedule relaxation. In: Proceedings of the 23rd ACM Sym-
posium on Operating Systems Principles (SOSP '11). ACM, pp. 337-351.

Guo, F, Ferrie, P, Chiueh, T.-C., 2008. A study of the packer problem and its so-
lutions. In: the 11th International Symposium on Recent Advances in Intrusion
Detection (RAID '08). Springer, pp. 98-115.

Jhi, Y.-C, Jia, X., Wang, X., Zhu, S., Liu, P, Wu, D., 2015. Program characterization
using runtime values and its application to software plagiarism detection. Softw.
Eng.IEEE Trans. 41 (9), 925-943.

[hi, Y.-C., Wang, X., Jia, X., Zhu, S., Liu, P, Wu, D., 2011. Value-based program char-
acterization and its application to software plagiarism detection. In: Proceed-
ings of the 33rd International Conference on Software Engineering (ICSE '11),
pp. 756-765.

Jiang, L., Misherghi, G., Su, Z., Glondu, S., 2007. Deckard: Scalable and accu-
rate tree-based detection of code clones. In: Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE '07). IEEE Computer Society,
pp. 96-105.

Kim, M.-]., Lee, J.-Y., Chang, H.-Y., Cho, S., Wilsey, PA., 2010. Design and perfor-
mance evaluation of binary code packing for protecting embedded software
against reverse engineering. In: the 13th [EEE International Symposium on Ob-
ject/Component/Service-Oriented Real-Time Distributed Computing (ISORC '10),
pp. 80-86.

Lim, H.-i., Park, H., Choi, S., Han, T., 2009. A method for detecting the theft of java
programs through analysis of the control flow information. Inf. Softw. Technol.
51 (9), 1338-1350.

Linn, C, Debray, S., 2003. Obfuscation of executable code to improve resistance to
static disassembly. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS ’'03). ACM, pp. 290-299.

Liu, C., Chen, C., Han, J., Yu, PS., 2006. GPLAG: Detection of software plagiarism by
program dependence graph analysis. In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD '06).
ACM, New York, NY, USA, pp. 872-881.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.].,
Hazelwood, K., 2005. Pin: Building customized program analysis tools with dy-
namic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI '05). ACM, New
York, NY, USA, pp. 190-200.

Luo, L., Ming, J., Wu, D., Liu, P, Zhu, S., 2014. Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism de-
tection. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE '14). ACM, pp. 389-400.

Madou, M., Van Put, L., De Bosschere, K., 2006. Loco: An interactive code (de) ob-
fuscation tool. In: Proceedings of the 2006 ACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-based Program Manipulation (PEPM '06). ACM,
pp. 140-144.

Matthews, B.W., 1975. Comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struc-
ture 405 (2), 442-451.

Ming, J., Zhang, F., Wy, D., Liu, P,, Zhu, S., 2016. Deviation-based obfuscation-resilient

program equivalence checking with application to software plagiarism detection
(accepted). Reliability, IEEE Transactions on pp. 1-1

Myles, G., Collberg, C., 2004. Detecting software theft via whole program path
birthmarks. In: the 7th Information Security International Conference (ISC '04).
Springer, pp. 404-415.

Myles, G., Collberg, C., 2005. K-gram based software birthmarks. In: Proceedings of
the 2005 ACM Symposium on Applied Computing (SAC '05). ACM, New York,
NY, USA, pp. 314-318.

Olszewski, M., Ansel, |., Amarasinghe, S., 2009. Kendo: efficient deterministic multi-
threading in software. ACM Sigplan Notices 44 (3), 97-108.

Park, H., Lim, H.-i., Choi, S., Han, T., 2011. Detecting common modules in java pack-
ages based on static object trace birthmark. Comput. J.I 54 (1), 108-124.

Patki, T., 2008. Dasho java obfuscator, http://www.cs.arizona.edu/~collberg/teaching/
620/2008/assignments/tools/dasho/index.html.

Prechelt, L., Malpohl, G., Philippsen, M., 2002. Finding plagiarisms among a set of
programs with JPlag. |. Universal Comput. Sci. 8 (11), 1016-1038.

Roundy, K.A., Miller, B.P., 2013. Binary-code obfuscations in prevalent packer tools.
ACM Comput. Surv. 46 (1), 4.

Schuler, D., Dallmeier, V., Lindig, C., 2007. A dynamic birthmark for java. In: Pro-
ceedings of the 22nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE '07). ACM, pp. 274-283.

Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.-i., 2004a. Design and evalu-
ation of birthmarks for detecting theft of java programs. In: IASTED Conference
on Software Engineering (IASTED '04), pp. 569-574.

Tamada, H., Okamoto, K., Nakamura, M., Monden, A., Matsumoto, K.-i., 2004b. Dy-
namic software birthmarks to detect the theft of windows applications. Inter-
national Symposium on Future Software Technology (ISFST '04). Vol. 20.

Tian, Z., Liu, T., Zheng, Q., Tong, F, Fan, M., Yang, Z., 2016. A new thread-aware birth-
mark for plagiarism detection of multithreaded programs (accecpted). In: Pro-
ceedings of the 38th International Conference on Software Engineering (ICSE '16
Companion . 1-1

Tian, Z., Zheng, Q., Fan, M., Zhuang, E., Wang, H., Liu, T.,. 2014a. DBPD: A dynamic
birthmark-based software plagiarism detection tool. In: the 26th International
Conference on Software Engineering and Knowledge Engineering (SEKE '14), pp.
740-741.

Tian, Z., Zheng, Q., Liu, T,, Fan, M., 2013. DKISB: Dynamic key instruction sequence
birthmark for software plagiarism detection. In: 2013 IEEE International Con-
ference on High Performance Computing and Communications (HPCC '13). IEEE,
pp. 619-627.

Tian, Z., Zheng,

., Liu, T, Fan, M., Zhang, X., Yang, Z., 2014b. Plagiarism detec-

tion for multithreaded software based on thread-aware software birthmarks. In:

Proceedings of the 22nd International Conference on Program Comprehension
(ICPC "14). ACM, pp. 304-313.

Tian, Z., Zheng, Q., Liu, T., Fan, M., Zhuang, E., Yang, Z., 2015. Software plagiarism
detection with birthmarks based on dynamic key instruction sequences. Softw.
Eng. IEEE Trans. 41 (12), 1217-1235.

Wang, X., Jhi, Y.-C., Zhu, S., Liu, P., 2009a. Behavior based software theft detection.
In: Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS '09). ACM, pp. 280-290.

Wang, X., |hi, Y.-C., Zhu, S., Liu, P,, 2009b. Detecting software theft via system call
based birthmarks. In: Annual Computer Security Applications Conference (AC-
SAC '09). IEEE, pp. 149-158.

Wu, Z., Gianvecchio, S., Xie, M., Wang, H., 2010. Mimimorphism: A new approach to
binary code obfuscation. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security (CCS '10). ACM, pp. 536-546.

Xie, X., Liu, F, Lu, B., Chen, L., 2010. A software birthmark based on weighted k-
gram. In: IEEE, pp. 400-405.

Zhang, F, Huang, H., Zhu, S., Wu, D., Liu, P, 2014a. Viewdroid: Towards obfusca-
tion-resilient mobile application repackaging detection. In: Proceedings of the
7th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec '14). Citeseer, pp. 25-36.

Zhang, F, Thi, Y.-C,, Wu, D., Liu, P, Zhu, S., 2012. A first step towards algorithm pla-

giarism detection. In: Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis (ISSTA '12). ACM, pp. 111-121.

Zhang, F, Wu, D., Liu, P, Zhu, S., 2014b. Program logic based software plagiarism

detection. In: IEEE25, pp. 66-77.

Zhou, W., Zhou, Y., Jiang, X., Ning, P, 2012. Detecting repackaged smartphone ap-
plications in third-party android marketplaces. In: Proceedings of the 2rd ACM

conference on Data and Application Security and Privacy (CODASPY '12). ACM,
pp. 317-326.

http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0024
http://www.cs.arizona.edu/~collberg/teaching/620/2008/assignments/tools/dasho/index.html
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30083-8/sbref0041
https://www.researchgate.net/publication/303948585_Deviation-Based_Obfuscation-Resilient_Program_Equivalence_Checking_With_Application_to_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/303948585_Deviation-Based_Obfuscation-Resilient_Program_Equivalence_Checking_With_Application_to_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/303948585_Deviation-Based_Obfuscation-Resilient_Program_Equivalence_Checking_With_Application_to_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/303296582_A_new_thread-aware_birthmark_for_plagiarism_detection_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/303296582_A_new_thread-aware_birthmark_for_plagiarism_detection_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/303296582_A_new_thread-aware_birthmark_for_plagiarism_detection_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/303296582_A_new_thread-aware_birthmark_for_plagiarism_detection_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/301428625_Semantics-based_obfuscation-resilient_binary_code_similarity_comparison_with_applications_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/301428625_Semantics-based_obfuscation-resilient_binary_code_similarity_comparison_with_applications_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/301428625_Semantics-based_obfuscation-resilient_binary_code_similarity_comparison_with_applications_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/301428625_Semantics-based_obfuscation-resilient_binary_code_similarity_comparison_with_applications_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/285936932_Program_Logic_Based_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/285936932_Program_Logic_Based_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/283176841_Effective_and_efficient_detection_of_software_theft_via_dynamic_API_authority_vectors?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/283176841_Effective_and_efficient_detection_of_software_theft_via_dynamic_API_authority_vectors?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/282499587_Software_Plagiarism_Detection_with_Birthmarks_Based_on_Dynamic_Key_Instruction_Sequences?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/282499587_Software_Plagiarism_Detection_with_Birthmarks_Based_on_Dynamic_Key_Instruction_Sequences?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/282499587_Software_Plagiarism_Detection_with_Birthmarks_Based_on_Dynamic_Key_Instruction_Sequences?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/277641613_Program_Characterization_Using_Runtime_Values_and_Its_Application_to_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/277641613_Program_Characterization_Using_Runtime_Values_and_Its_Application_to_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/277641613_Program_Characterization_Using_Runtime_Values_and_Its_Application_to_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/271461554_DKISB_Dynamic_Key_Instruction_Sequence_Birthmark_for_Software_Plagiarism_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266660618_ViewDroid_Towards_obfuscation-resilient_mobile_application_repackaging_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266660618_ViewDroid_Towards_obfuscation-resilient_mobile_application_repackaging_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266660618_ViewDroid_Towards_obfuscation-resilient_mobile_application_repackaging_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266660618_ViewDroid_Towards_obfuscation-resilient_mobile_application_repackaging_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/266657777_Plagiarism_detection_for_multithreaded_software_based_on_thread-aware_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262426534_Software_plagiarism_detection_A_graph-based_approach?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262426534_Software_plagiarism_detection_A_graph-based_approach?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262426534_Software_plagiarism_detection_A_graph-based_approach?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262426534_Software_plagiarism_detection_A_graph-based_approach?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262321614_A_first_step_towards_algorithm_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262321614_A_first_step_towards_algorithm_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262321614_A_first_step_towards_algorithm_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262233541_Binary-Code_Obfuscations_in_Prevalent_Packer_Tools?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/262233541_Binary-Code_Obfuscations_in_Prevalent_Packer_Tools?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/260299626_Heap_Graph_Based_Software_Theft_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/260299626_Heap_Graph_Based_Software_Theft_Detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/251973586_A_software_birthmark_based_on_weighted_k-gram?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/251973586_A_software_birthmark_based_on_weighted_k-gram?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/241623856_Detecting_Repackaged_Smartphone_Applications_in_Third-Party_Android_Marketplaces?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/241623856_Detecting_Repackaged_Smartphone_Applications_in_Third-Party_Android_Marketplaces?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/241623856_Detecting_Repackaged_Smartphone_Applications_in_Third-Party_Android_Marketplaces?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/241623856_Detecting_Repackaged_Smartphone_Applications_in_Third-Party_Android_Marketplaces?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/232625897_Design_and_Performance_Evaluation_of_Binary_Code_Packing_for_Protecting_Embedded_Software_against_Reverse_Engineering?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/232625897_Design_and_Performance_Evaluation_of_Binary_Code_Packing_for_Protecting_Embedded_Software_against_Reverse_Engineering?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/232625897_Design_and_Performance_Evaluation_of_Binary_Code_Packing_for_Protecting_Embedded_Software_against_Reverse_Engineering?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/232625897_Design_and_Performance_Evaluation_of_Binary_Code_Packing_for_Protecting_Embedded_Software_against_Reverse_Engineering?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/232625897_Design_and_Performance_Evaluation_of_Binary_Code_Packing_for_Protecting_Embedded_Software_against_Reverse_Engineering?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/222763747_A_static_API_birthmark_for_Windows_binary_executables?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/222763747_A_static_API_birthmark_for_Windows_binary_executables?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221675867_Comparison_of_the_Predicted_and_Observed_Secondary_Structure_of_T4_Phage_Lysozime?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221675867_Comparison_of_the_Predicted_and_Observed_Secondary_Structure_of_T4_Phage_Lysozime?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221675867_Comparison_of_the_Predicted_and_Observed_Secondary_Structure_of_T4_Phage_Lysozime?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221653862_GPLAG_Detection_of_software_plagiarism_by_program_dependence_graph_analysis?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221653862_GPLAG_Detection_of_software_plagiarism_by_program_dependence_graph_analysis?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221653862_GPLAG_Detection_of_software_plagiarism_by_program_dependence_graph_analysis?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221609243_Behavior_based_software_theft_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221554444_Value-based_program_characterization_and_its_application_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221554444_Value-based_program_characterization_and_its_application_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221554444_Value-based_program_characterization_and_its_application_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221554444_Value-based_program_characterization_and_its_application_to_software_plagiarism_detection?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221427586_A_Study_of_the_Packer_Problem_and_Its_Solutions?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221427586_A_Study_of_the_Packer_Problem_and_Its_Solutions?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221427586_A_Study_of_the_Packer_Problem_and_Its_Solutions?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/221046442_Detecting_Software_Theft_via_System_Call_Based_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220999307_K-gram_based_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220999307_K-gram_based_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220999307_K-gram_based_software_birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220989942_LOCO_an_interactive_code_Deobfuscation_tool?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220989942_LOCO_an_interactive_code_Deobfuscation_tool?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220989942_LOCO_an_interactive_code_Deobfuscation_tool?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220989942_LOCO_an_interactive_code_Deobfuscation_tool?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220939083_Kendo_Efficient_Deterministic_Multithreading_in_Software?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220939083_Kendo_Efficient_Deterministic_Multithreading_in_Software?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220910147_Efficient_Deterministic_Multithreading_through_Schedule_Relaxation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220910147_Efficient_Deterministic_Multithreading_through_Schedule_Relaxation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220910147_Efficient_Deterministic_Multithreading_through_Schedule_Relaxation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220905153_Detecting_Software_Theft_via_Whole_Program_Path_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220905153_Detecting_Software_Theft_via_Whole_Program_Path_Birthmarks?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220883146_A_dynamic_birthmark_for_Java?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220752268_9_8_Pin_Building_Customized_Program_Analysis_Tools_with_Dynamic_Instrumentation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220752268_9_8_Pin_Building_Customized_Program_Analysis_Tools_with_Dynamic_Instrumentation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220752268_9_8_Pin_Building_Customized_Program_Analysis_Tools_with_Dynamic_Instrumentation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220752268_9_8_Pin_Building_Customized_Program_Analysis_Tools_with_Dynamic_Instrumentation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220752268_9_8_Pin_Building_Customized_Program_Analysis_Tools_with_Dynamic_Instrumentation?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220609382_A_method_for_detecting_the_theft_of_Java_programs_through_analysis_of_the_control_flow_information?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220609382_A_method_for_detecting_the_theft_of_Java_programs_through_analysis_of_the_control_flow_information?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220609382_A_method_for_detecting_the_theft_of_Java_programs_through_analysis_of_the_control_flow_information?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220459116_Detecting_Common_Modules_in_Java_Packages_Based_on_Static_Object_Trace_Birthmark?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220459116_Detecting_Common_Modules_in_Java_Packages_Based_on_Static_Object_Trace_Birthmark?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220328285_An_Approach_to_Source-Code_Plagiarism_Detection_and_Investigation_Using_Latent_Semantic_Analysis?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220328285_An_Approach_to_Source-Code_Plagiarism_Detection_and_Investigation_Using_Latent_Semantic_Analysis?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220269513_Mimimorphism_A_New_Approach_to_Binary_Code?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220269513_Mimimorphism_A_New_Approach_to_Binary_Code?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/220269513_Mimimorphism_A_New_Approach_to_Binary_Code?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/4251304_DECKARD_scalable_and_accurate_tree-based_detection_of_code_clones?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/4251304_DECKARD_scalable_and_accurate_tree-based_detection_of_code_clones?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/4251304_DECKARD_scalable_and_accurate_tree-based_detection_of_code_clones?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/4251304_DECKARD_scalable_and_accurate_tree-based_detection_of_code_clones?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/3437494_SANDMark-A_tool_for_software_protection_research?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/3437494_SANDMark-A_tool_for_software_protection_research?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2907828_Design_and_Evaluation_of_Birthmarks_for_Detecting_Theft_of_Java_Programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2907828_Design_and_Evaluation_of_Birthmarks_for_Detecting_Theft_of_Java_Programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2907828_Design_and_Evaluation_of_Birthmarks_for_Detecting_Theft_of_Java_Programs?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2865334_Obfuscation_of_Executable_Code_to_Improve_Resistance_to_Static_Disassembly?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2865334_Obfuscation_of_Executable_Code_to_Improve_Resistance_to_Static_Disassembly?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2865334_Obfuscation_of_Executable_Code_to_Improve_Resistance_to_Static_Disassembly?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag?el=1_x_8&enrichId=rgreq-822c6dad7ebb0f5f7aba668adebe42d1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkxNzEzOTtBUzozNzc1NDM0MDUzOTE4NzRAMTQ2NzAyNDc3MDUyMg==

148

Z. Tian et al./The Journal of Systems and Software 119 (2016) 136-148

Zhenzhou Tian received the BS degree in computer science and technology from Xi'an Jiaotong University, China, in 2010. He is currently working
toward the PhD degree in the Department of Computer Science and Technology at Xi'an Jiaotong University, China. His research interests include
trustworthy software, software plagiarism detection, and software behavior analysis.

Ting Liu received the BS degree in information engineering and the PhD degree in system engineering from the School of Electronic and Infor-
mation, Xi'an Jiaotong University, Xi'an, China, in 2003 and 2010, respectively. Currently, he is an associate professor of the Systems Engineering

Institute, Xi'an Jiaotong University. His research interests include smart grid, network security, and trustworthy software. He is a member of the
IEEE.

Qinghua Zheng received the BS degree in computer software in 1990, the MS degree in computer organization and architecture in 1993, and the
PhD degree in system engineering in 1997 from Xi'an Jiaotong University, China. He was a postdoctoral researcher at Harvard University in 2002.
He is currently a professor in Xi'an Jiaotong University, and the dean of the Department of Computer Science. His research areas include computer
network security, intelligent e-learning theory and algorithm, multimedia e-learning, and trustworthy software. He is a member of the IEEE.

Ming Fan received the BS degree in computer science and technology from Xi’an Jiaotong University, China, in 2013. He is currently working
toward the PhD degree in the Department of Computer Science and Technology at Xi'an Jiaotong University, China. His research interests include
trustworthy software and malware detection of Android Apps.

Eryue Zhuang received the BS degree in software and microelectronics from Northwestern Polytechnical University, China, in 2014. She is currently
working toward the MS degree in the Department of Computer Science and Technology at Xi'an Jiaotong University, China. Her research interests
include trustworthy software and user behavior analysis.

Zijiang Yang received the BS degree from the University of Science and Technology of China, the MS degree from Rice University, and the PhD
degree from the University of Pennsylvania. He is an associate professor in computer science at Western Michigan University. Before joining WMU
he was an associate research staff at NEC Labs America. He was also a visiting professor at the University of Michigan from 2009 to 2013. His

research interests are in the area of software engineering with the primary focus on the testing, debugging and verification of software systems.
He is a senior member of IEEE.

https://www.researchgate.net/publication/303917139

	Exploiting thread-related system calls for plagiarism detection of multithreaded programs
	1 Introduction
	2 Software birthmarks
	2.1 Dynamic software birthmarks
	2.2 Thread-related system call birthmark

	3 TreSB based software plagiarism detection
	3.1 Similarity calculation
	3.2 Plagiarism detection
	3.3 Implementation

	4 Experiments and evaluation
	4.1 Experimental setup
	4.2 Validation of resilience property
	4.2.1 Resilience to different compilers and optimization levels
	4.2.2 Resilience to advanced obfuscation tools
	4.2.3 Resilience to packing tools

	4.3 Validation of credibility property
	4.3.1 Distinguishing programs in different categories
	4.3.2 Distinguishing programs in same categories

	4.4 Comparing with other birthmarks
	4.4.1 Performance evaluation with respect to URC
	4.4.2 Evaluation with F-measure and MCC
	4.4.3 Comparing birthmarks with AUC analysis

	4.5 Effectiveness of the sequence selection
	4.6 Alternative approach
	4.6.1 Thread-related system call with context birthmark
	4.6.2 Performance evaluation of TreCxtB

	5 Related work
	6 Conclusion and future work
	 Acknowledgement
	 References

