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DAPASA: Detecting Android Piggybacked Apps
Through Sensitive Subgraph Analysis

Ming Fan, Jun Liu, Wei Wang, Haifei Li, Zhenzhou Tian, and Ting Liu

Abstract— With the exponential growth of smartphone adop-
tion, malware attacks on smartphones have resulted in serious
threats to users, especially those on popular platforms, such as
Android. Most Android malware is generated by piggybacking
malicious payloads into benign applications (apps), which are
called piggybacked apps. In this paper, we propose DAPASA,
an approach to detect Android piggybacked apps through
sensitive subgraph analysis. Two assumptions are established to
reflect the different invocation patterns of sensitive APIs in the
injected malicious payloads (rider) of a piggybacked app and in
its host app (carrier). With these two assumptions, DAPASA gen-
erates a sensitive subgraph (SSG) to profile the most suspicious
behavior of an app. Five features are constructed from SSG to
depict the invocation patterns. The five features are fed into the
machine learning algorithms to detect whether the app is piggy-
backed or benign. DAPASA is evaluated on a large real-world
data set consisting of 2551 piggybacked apps and 44 921 popular
benign apps. Extensive evaluation results demonstrate that the
proposed approach exhibits an impressive detection performance
compared with that of three baseline approaches even with
only five numeric features. Furthermore, the proposed approach
can complement permission-based approaches and API-based
approaches with the combination of our five features from a
new perspective of the invocation structure.

Index Terms— Piggybacked apps, sensitive API, sensitive sub-
graph, malware detection, static analysis.
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I. INTRODUCTION

A. Background

ANDROID smartphones have recently gained much pop-
ularity. Many Android application (app) markets such as

Google Play1 and Anzhi Market2 have been set up, where
users can download various apps. The Android platform has
become a major target of malware. As reported in a recent
study conducted by Qihoo,3 about 37,000 Android malware
attacks were detected daily in the first quarter of 2016.

According to Zhou and Jiang [1], piggybacking is one of
the most common techniques utilized by malware authors to
piggyback malicious payloads on popular apps to produce
malware. About 86% of their collected 1,260 samples were
piggybacked versions of legitimate apps with malicious pay-
loads. The malware created through piggybacking is called a
piggybacked app [2], [3]. A piggybacked app has two main
parts, namely, the original benign code and the injected mali-
cious payloads. Following the conventions described in [2],
we use the term carrier to refer to the former and the term
rider to refer to the latter.

Developing new malware from scratch is labor intensive, but
malware authors can easily add a specific rider into various
carriers through piggybacking techniques to quickly produce
and distribute a large number of piggybacked apps [4]–[7]. For
example, members of the notorious malware family Geinimi
usually repackage themselves into various legitimate game
apps, steal personal information and send it to a remote
server. Typically, malware authors download paid apps from
the official market, disassemble them, add malicious payloads,
reassemble and submit the “new” apps to the official or alter-
native Android markets for free. The new piggybacked apps
would entice smartphone users to download and install.

With the inclusion of the new rider code, piggybacked
apps pose significant security threats, and effective tech-
niques to detect them are necessary. Many research proto-
types have been implemented to detect malware. The main
challenge for current approaches is to fight against mal-
ware variants and zero-day malware. Current commercial
anti-virus systems and signature-based approaches [8]–[11],
which look for specific patterns in the bytecode, are
effective in identifying known malware relying on sig-
natures. However, they are easily evaded by bytecode-
level transformation attacks [12]. Therefore, many other

1http://play.google.com/store
2http://www.anzhi.com
3http://zt.360.cn/report/

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



FAN et al.: DAPASA: DETECTING ANDROID PIGGYBACKED APPS THROUGH SENSITIVE SUBGRAPH ANALYSIS 1773

approaches [13]–[17] based on machine learning have been
developed. These approaches extract features from app behav-
iors (e.g., permission request and API calls) and apply machine
learning algorithms to perform binary classification. Although
these machine learning approaches obtain high detection accu-
racy, they extract features solely from external symptoms and
do not seek for an accurate and complete interpretation of app
behavior [18].

B. Overview of the Proposed Approach
In this work, we detect Android piggybacked apps by uti-

lizing the distinguishable invocation patterns of sensitive APIs
between the rider and carrier. Sensitive APIs are governed
by permissions for apps to access sensitive information (e.g.,
the user’s phone number or location) or to perform sensitive
tasks (e.g., change the WIFI state, send messages). It is worth
noting that sensitive APIs constitute only a small portion of
the whole Android APIs and they cannot be easily obfuscated
by existing techniques whereas the names of user-defined
functions are usually obfuscated as a, b or c.

To further understand the distinguishable invocation pat-
terns, we establish two assumptions based on an empirical
analysis of piggybacked apps.

Assumption 1: To perform its malicious task, the rider
invokes more sensitive APIs than the carrier does.

Assumption 2: Generally, in the rider, the cohesion of sen-
sitive APIs, which is measured by calling distances, is higher
than that in the carrier.

By exploiting the two assumptions, we develop DAPASA,
an approach to detect Android piggybacked apps through
sensitive subgraph analysis. DAPASA consists of the following
four steps.

(1) DAPASA starts with the construction of a static
function-call graph of a given app. It is a directed graph where
nodes denote the functions invoked by the app and edges
denote the actual calls among these functions.

(2) To differentiate the maliciousness of different sensitive
APIs, DAPASA calculates the sensitivity coefficients for each
sensitive API through a term frequency-inverse document
frequency (TF-IDF)-like measure.

(3) DAPASA divides the static function-call graph into a set
of subgraphs heuristically with sensitive API nodes and their
nearby normal nodes. The subgraph with the highest sensitivity
coefficient is selected as the sensitive subgraph to profile the
most suspicious behavior of the given app.

(4) Five features are constructed from the sensitive sub-
graph. The feature sensitivity coefficient of the sensitive sub-
graph (scg) and the feature total sensitive distance of the
sensitive subgraph (tsd) are used to measure the maliciousness
and cohesion of sensitive APIs, respectively. In addition, three
different types of sensitive motifs are exploited to further
depict in a fine-grained manner the local invocation patterns
of sensitive APIs. Finally, the five features are fed into
machine learning algorithms to detect whether the app is
piggybacked or benign.

DAPASA is evaluated on a large real-world dataset con-
sisting of 2,551 piggybacked apps and 44,921 popular benign
apps. The evaluation results show that DAPASA achieves good

performance with a true positive rate of 95% and a false
positive rate of 0.7%.

C. Contributions and Organization
The main contributions of this work are listed below.
(i) We propose two assumptions about the different invoca-

tion patterns of sensitive APIs between the rider and
carrier in Android piggybacked apps. By exploiting
these two assumptions, we construct a sensitive subgraph
to represent the entire call graph and profile the most
suspicious behavior of the given app.

(ii) We propose five numeric features from the generated
sensitive subgraph. These features can not only be used
for independent detection of piggybacked apps, but
also have the ability to complement permission-based
approaches and API-based approaches in the perfor-
mance and explanation of the detection results.

(iii) We propose a TF-IDF-like measure to calculate the
sensitivity coefficient of each sensitive API based on the
idea of TF-IDF. It can reduce the interference factors of
the sensitive APIs that frequently occur in both benign
and malicious apps.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III introduces
two important notations employed in this work. DAPASA is
described in Section IV and evaluated in Section V. Section VI
presents in-depth discussions. The conclusions and future work
are followed in Section VII.

II. RELATED WORK

With the recent surge in research interest in the area of
Android device security, a large number studies focusing on
mobile malware detection have been conducted. The current
work is related to three types of work described below.

A. Piggybacked App Detection

Several studies have provided approaches for piggybacked
app detection; they can be categorized in two main groups,
namely, static and dynamic analysis approaches.

Static analysis approaches investigate software properties by
inspecting apps and their source code. The study most related
to ours is the research conducted by Zhou and Jiang [1].
In their study, they classified the ways through which
malware is installed in smartphones into three main cate-
gories: piggybacking, update attack, and drive-by download;
piggybacking is the most common one. Zhou et al. pro-
posed a fast and scalable approach called PiggyApp [2].
PiggyApp decouples the app code into primary and non-
primary modules and extracts certain features, such as per-
missions and APIs used in the primary module, to detect
piggybacked apps. Guan et al. [6] proposed a semantic-based
approach called RepDetector, which first extracts input-output
states of core functions in the app, and then compares the
similarities between functions and apps. RepDetector is robust
against obfuscation attacks relying on the semantic analysis of
each app instead of syntax characteristics. Zhang et al. [5]
proposed ViewDroid, which first designs a new birthmark



1774 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 8, AUGUST 2017

(feature view graph) for Android apps based on the users
navigation behavior across app views, and then calculates
the similarity of the constructed birthmarks. ViewDroid is
also robust against the obfuscation attacks since its high-
level abstracted birthmark is not affected by low-level code
obfuscation techniques. Both RepDetector and ViewDroid
effectively detect app clones by finding similar pairs in the
app market based on the proposed robust features.

Unlike static ones, dynamic analysis approaches typically
extract run-time app information by instrumenting the Android
framework. Lin et al. [19] proposed SCSdroid, which extracts
the system call sequence of an app at run-time and uses the
common subsequences to detect piggybacked apps in the same
family. Isohara et al. [20] proposed kernel-based behavior
analysis, which generates a set of regular expression rules from
the names and parameters of system calls of training malware,
and detects the new apps by mapping their system calls and
parameters with the rules. However, most dynamic analysis
approaches require a representative set of execution paths and
it is difficult to ensure that all the execution paths of the apps
can be covered.

Different from these studies, our approach focuses on
the finding of different invocation patterns of sensitive
APIs between the rider and the carrier instead of pair-wise
apps similarity calculation in the market. The current work
helps improve our understanding of the malicious behaviors
of piggybacked apps.

B. Structure-Based Analysis

The proposed approach is also related to approaches that are
based on structure analysis of function-call graphs [21] or pro-
gram dependence graphs [22]–[25].

Given that the identification of similarities in graphs is
difficult, Gascon et al. [21] proposed an approach for malware
detection based on efficient embedding of function-call graphs
with an explicit feature map. Zhang et al. [18] implemented a
prototype system called DroidSIFT, which classifies Android
malware based on a weighted contextual API dependency
graph. Chen et al. [26] proposed MassVet, which models
the app’s user interfaces as a directed graph, in which each
node is a view within an app, and each edge describes the
navigation (triggered by the input events) relations among the
nodes. With similar view structures in different apps, MassVet
can effectively identify piggybacked apps.

Several of these approaches analyze the entire graph, which
might cause high overheads. In our work, only the sensitive
API nodes and their nearby normal nodes are analyzed.
Moreover, a sensitive subgraph is utilized to represent the
entire function-call graph to reduce computational complexity.

C. Measurement of Features

An increasing number of features, such as permissions and
APIs, are proposed for malware detection with machine learn-
ing algorithms. Different features have different contributions
to the identification of maliciousness; therefore, measurement
of features is significant.

For permission-based features, Moonsamy et al. [27] ranked
the frequency of required and used permissions in mali-
cious and benign datasets, respectively, to determine the
most popular permission patterns requested by malicious and
benign apps. Wang et al. [13] proposed three approaches,
namely, mutual information, CorrCoef, and T-test, to rank
permissions for improved understanding of their risk rele-
vance. APIs are another widely used type of features for
the detection of Android malware. Aafer et al. [28] iden-
tified the top APIs that invoked in Android malware, and
analyzed the difference in usage between malware and benign
apps. Suarez-Tangil et al. [11] proposed an approach to
measure how important a code block is to a malware family
with TF-IDF.

Unlike these studies, the current work presents a
TF-IDF-like approach to measure the sensitivity coefficient
of each sensitive API by considering not only its frequency
of occurrence in malicious and benign apps, but also its
corresponding category information.

III. BASIC NOTATIONS

Two basic notations, static function-call graph and sensitive
subgraph, are introduced in this section.

Given that limited resources impede monitoring apps at run-
time, DAPASA performs a static analysis. It transforms the
given app into a graph representation, namely, static function-
call graph [21], [29], which contains the necessary structure
information to profile the behaviors of an app.

Definition 1 (StaticFunction-CallGraph (SFCG)): SFCG is
constructed with the call relations among the functions cap-
tured from Android apk files (the format of installation file
of Android apps) with disassembling tools such as apktool.4

It can be represented as a directed graph SFCG = (V , E).
• V = {vi |1 ≤ i ≤ n} denotes the set of functions invoked

by a given app, in which each vi ∈ V corresponds to a
function name.

• E ⊆ V × V denotes the set of function-calls, in which
edge (vi , v j ) ∈ E indicates one call exists from caller
function vi to callee function v j .

Intuitively, we provide the SFCG of a sample (referred
to corner23 for short) in the Geinimi family. As illustrated
in Fig. 1, SFCG contains thousands of function nodes. To iden-
tify malware, we merely focus on the sensitive APIs governed
by Android permissions. Sensitive APIs constitute only a small
portion of the total APIs; however, through them, malware can
access sensitive information or perform sensitive tasks.

To obtain the set of sensitive APIs, we use the tool Pscout5

proposed by Au et al. [30]. A total of 680 sensitive APIs
are provided by Pscout and can be presented as S AS =
{s1, s2, ..., si , si+1, ..., s680}, where si is the name of a sen-
sitive API. Fifteen sensitive APIs are used by corner23.
They are denoted by red nodes with function name labels
in Fig. 1. Through these APIs, corner23 obtains many sen-
sitive resources. For example, it can access the last known
location via getLastKnownLocation() and can send messages
via sendTextMessage().

4https://ibotpeaches.github.io/Apktool/
5http://pscout.csl.toronto.edu/
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Fig. 1. The SFCG of corner23.

The contribution of each sensitive API to detecting mali-
cious apps should differ. Thus, a sensitivity coefficient is
calculated for each sensitive API in a specific category based
on a TF-IDF-like measure to denote its malware detection
ability, as described in Section IV-A.

In our two proposed assumptions, for piggybacked apps,
the rider and carrier have different invocation patterns of
sensitive APIs, which can be used as the basis of our
approach. However, analyzing the entire graph is neither
effective (the malicious part is buried in the app code) nor
efficient (too many nodes and edges to analyze). Mining
a representative invocation structure from SFCG can help
understand the most suspicious behavior of the given app. For
piggybacked apps, the maliciousness and cohesion of sensitive
APIs in the invocation structures mined from them would
be higher than those in benign apps. Therefore, with the
identified sensitive APIs, SFCG can be divided into a set
of subgraphs with the sensitive API nodes and their nearby
normal nodes. The process of constructing the subgraph
set (SGS) is described in Section IV-B. The subgraph with
the highest sensitivity coefficient is selected as the indicator
of the maliciousness of the app. We call this subgraph the
sensitive subgraph.

Definition 2 (Sensitive Subgraph (SSG)): SSG is a sub-
graph in SGS, and it has the highest sensitivity coefficient
among all subgraphs in SGS. It can be obtained with Eqs. i (1)
and (2).

SSG = argmax
SG j∈SGS

(scg(SG j )), (1)

scg(SG j ) =
∑

si∈S NG(SG j )

scs(si ), 1 ≤ j ≤ m. (2)

• scg(SG j ) is the sensitivity coefficient of subgraph SG j .
• SNG(SG j ) is the set of sensitive APIs contained in SG j .
• scs(si ) is the sensitivity coefficient of sensitive API si .
• m is the number of subgraphs in SGS.
Fig. 2 shows the extracted SSG of corner23. The SSG

consists of six sensitive APIs and nearby normal nodes.
By manually analyzing the code, we find that the SSG
extracted from corner23 is located in the most notorious
module of the Geinimi family. The module is used to col-
lect users’ sensitive information every five minutes, such as
the device ID via getDeviceId() and the phone number via

Fig. 2. The SSG of corner23.

getLine1Number().

IV. DAPASA

As shown in Fig. 3, DAPASA consists of four steps. First,
the apk file is given as the input, whose classes.dex file [31]
is converted into .smali files (an interpreted language that
syntactically approaches pure source codes) with apktool.
By scanning the .smali files, the possible functions and the
calling relations between them can be obtained. Thus, SFCG
can be constructed in manner in which nodes denote the
functions and edges denote the calls. Second, two key steps
are performed: measuring the sensitivity coefficient of each
sensitive API and mining the SSG in the generated SGS.
Lastly, five features of SSG are constructed and fed into
machine learning algorithms to detect whether the app is
piggybacked or benign.

A. Measurement of the Sensitivity Coefficient

The sensitivity coefficient is calculated to denote the mali-
ciousness of a sensitive API in performing malicious behavior.
Given that several sensitive APIs are used in malware and
benign apps, the measurement would be biased if only the
coefficient of a sensitive API is calculated with its frequency
of occurrence in a malicious dataset, such as MIGDroid [32].

We propose a TF-IDF-like measure of the sensitiv-
ity coefficient of sensitive APIs that exploits the idea of
TF-IDF [33], [34]. To achieve this, 6,154 malicious apps
are downloaded from VirusShare,6 and 44,921 benign apps
in 26 categories, such as Game, Personalization, and Weather,
are collected from Google Play and Anzhi Market. We use six
terms of sensitive API si to understand its distribution in our
malicious and benign datasets.

• mc(si ): malicious count of si . It denotes the number of
malware using si in the malicious dataset.

• bc(si , c): benign count of si . It denotes the number of
benign apps using si in category c.

• mrt (si ): ratio of mc(si ) to the total number of malware in
the malicious dataset which is represented as p. mrt (si )
can be obtained with mrt (si ) = mc(si )

p , where p = 6, 154
in our work.

• brt (si , c): ratio of bc(si , c) to the total number of benign
apps in category c which is represented as q(c). brt (si , c)

can be obtained with brt (si , c) = 1+bc(si ,c)
q(c) .

• mrk(si ): rank number of mrt (si ) among all the sensi-
tive APIs.

6http://virusshare.com/
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Fig. 3. Overview of DAPASA.

TABLE I

SEVERAL SENSITIVE APIS’ mrts , mrks , AND THEIR CORRESPONDING brts ,brks , scss ,
AND ranks IN Game, Personalization AND Weather CATEGORIES

• brk(si , c): rank number of brt (si , c) among all the sen-
sitive APIs in category c.

TABLE I shows several sensitive APIs with high mrts and
their corresponding brts and brks in Game, Personalization,
and Weather categories, respectively. We obtain three obser-
vations from TABLE I.

(1) Several sensitive APIs are used frequently in the mali-
cious and benign datasets. For example, openConnection() and
connect() are used to connect the Internet. Regardless of the
category, their brks are very small.

(2) Several sensitive APIs are used more frequently in the
malicious dataset than in the benign dataset. An example is
sendTextMessage(). Its mrk is 2, but its brks in all the three
categories exceed 50.

(3) The brts and brks differ in the different categories.
For example, in categories Game and Weather, nearly all
sensitive APIs have higher brts than those in the category
Personalization, which have lower than 0.3.

With these three observations, we consider the following
questions to better understand our measurement of the sensi-
tivity coefficient.

Q 1: If the mrt of a sensitive API is high, will its sensitivity
coefficient also be high?

As illustrated in TABLE I, the mrts of openConnection()
and getSimSerialNumber() (used to obtain the user’s SIM
number) are 0.479 and 0.285, respectively. Does this mean
openConnection() has a higher sensitivity coefficient than
getSimSerialNumber()?

The answer is no. As noted in the first two observations,
openConnection() is widely used in both malicious and benign
apps because nowadays, most apps need to connect to the
Internet. Meanwhile, getSimSerialNumber() occurs much more
frequently in malicious apps than in benign apps because

benign apps rarely need to have the SIM number. Intuitively,
getSimSerialNumber() should have a higher sensitivity coeffi-
cient than openConnection().

Q 2: Does an app that obtains location information by
using getLastKnownLocation() appear suspicious?

The answer is also no. As noted in the last observation,
the brts in the three categories are different. For apps in
the Personalization category, the API’s brt is only 0.079 and
would reveal the location information of users. In the Weather
category, the API’s brt is 0.595, and the API is generally
used to obtain weather information in the location of users.
According to this discussion, the category information can be
exploited in our measurement of sensitivity coefficients. For
the same sensitive API, its sensitivity coefficients in different
categories would be different.

In text mining literature, TF-IDF is a numerical statistic
intended to reflect how discriminating a term is to a document
in a corpus. By utilizing the idea of TF-IDF for reference,
we make the scs of a sensitive API be in positive correlation
with its mrt and in negative correlation with its brt . For
sensitive API si of an app that belongs to a specific category c,
its sensitivity coefficient scs(si ) is calculated with Eq. (3).

scs(si ) = mrt (si )× log
1

brt (si , c)
. (3)

For example, the Game category has 3,505 apps, in which
2,801 apps use openConnection() and 174 apps use get-
SimSerialNumber(). Their scss are 0.047 and 0.371, respec-
tively. Apparently, getSimSerialNumber() is more sensitive
than openConnection().

TABLE I also shows the scss and ranks of the sen-
sitive APIs. sendTextMessage() has the highest scs in all
the three categories, given that it is frequently used by
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malicious apps and rarely used by benign apps. This condition
reflects the common attack of stealthily sending SMS mes-
sages to premium numbers, thus allowing the owner of
these numbers to earn money from the victims. Combined
with sending SMS messages, the sensitive APIs utilized to
obtain the user’s privacy information, such as phone num-
ber (getLine1Number()) and SIM number (getSimSerialNum-
ber()), would also have high coefficients. Unlike the previous
ones, sensitive APIs used frequently both in malicious and
benign apps, such as openConnection(), are assigned with low
coefficients.

The results show that the sensitivity coefficients calculated
by the TF-IDF-like measure can reflect the maliciousness of
sensitive APIs in different categories.

However, there are some apps that have no category infor-
mation, especially the malware samples downloaded from
VirusShare. We calculate the sensitivity coefficients of sen-
sitive APIs for such apps as:

scs(si ) = mrt (si )× log
1

brt (si )
. (4)

brt (si ) denotes the percent of apps in all benign apps using
the sensitive API si and it is obtained with Eq. (5), in which
C denotes the set of all the benign categories.

brt (si ) = 1+∑
c∈C bc(si , c)∑
c∈C q(c)

(5)

B. Generation of SSG
Based on our proposed assumptions, SFCG is divided into

a set of subgraphs, and the subgraph that has the highest
sensitivity coefficient is selected as SSG, which can profile the
suspicious behavior of the given app. SSG can be generated
through the following steps.

Algorithm 1 Generate SGS
Input: SFCG = {V , E}; SS
Output: SGS
1: SGS ← ∅;
2: for each vi ∈ SS do
3: Vi ← ∅;
4: for each vk ∈ V do
5: if dis(vk, vi ) <= 2 then
6: Vi = Vi ∪ {vk};
7: end if
8: end for
9: RemoveLibNodes(Vi);

10: Ei = Vi × Vi ∩ E ;
11: SGi ← (Vi , Ei );
12: SGS = SGS ∪ {SGi };
13: end for
14: return SGS

1) Generation of SGS : Algorithm 1 highlights the step
of generating the subgraph set with the input of the SFCG
of a given app and its invoked sensitive API node set (SS).
For each sensitive API node, a subgraph is constructed with
its neighbor nodes in the SFCG. The function dis(vk, vi )

returns the shortest path length from node vk to node vi .
When calculating the distance between two nodes, the SFCG
is regarded as an undirected graph. In our work, the average
shortest path length of the SFCGs is generally from 3 to 5.
When constructing subgraphs, the distances of normal nodes
to the sensitive API node are less than or equal to 2.

The function RemoveLibNodes(Vi) in algorithm 1 is uti-
lized to remove the nodes invoked by third-party libraries for
Vi via a library list. In our approach, the potential suspicious
libraries might cause false positives since such libraries contain
similar invocation patterns of sensitive APIs as the malicious
payloads do. Therefore, we leverage the result provided by
the tool LibD7 proposed by Li et al. [35], which identified
60,729 different third-party libraries with a manually validated
accuracy rate. More precisely, we first add the package names
of the identified libraries into a list. We then remove the
method nodes that are invoked by such packages according
to the list from the function call graph. The test result
shows that about 81.8% apps in our dataset contain the third-
party libraries such as com/google/ads, com/facebook and
com/umeng. After this procedure, we can effectively filter the
potential suspicious libraries.

Algorithm 2 Select SSG from SGS
Input: SGS
Output: SSG
1: while ∃SGi , SG j ∈ SGS, i 
= j and SNG(SGi ) ∩

SNG(SG j ) 
= ∅ do
2: Vj = Vi ∪ Vj , E j = Ei ∪ E j

3: SGS = SGS \ {SGi }
4: end while
5: SSG = argmax SG j∈SGS (scg(SG j ))
6: return SSG

2) Selection of SSG: Algorithm 2 highlights the step of
selecting SSG from the SGS generated by algorithm 1. In SGS,
two subgraphs that contain the same sensitive API nodes may
exist. Algorithm 2 merges the subgraphs with the condition
SNG(SGi )∩SNG(SG j ) 
= ∅ to ensure that one sensitive API
node can only occur in one subgraph. Afterward, the sensitivity
coefficient for each SG j ∈ SGS is calculated with Eq. (2), and
the subgraph with highest coefficient among all the subgraphs
in SGS is selected as the SSG with Eq. (1). If no sensitive
API call exists in a given app, then it does not have an SSG.

C. Construction of Features

By employing SSG, we construct a set of features from SSG
based on our two proposed assumptions. The features fall into
three fields to distinguish piggybacked apps from benign apps
in different aspects. We randomly select 500 piggybacked apps
and 500 benign apps, respectively, to determine if our features
are able to distinguish them.

1) Sensitivity Coefficient of SSG—scg(SSG): scg(SSG) is
defined to denote the maliciousness of SSG. As mentioned in
assumption I, to perform its malicious task, the rider would

7https://github.com/IIE-LibD/libd
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Fig. 4. scg(SSG) for benign and piggybacked apps.

Fig. 5. tsd(SSG) for benign and piggybacked apps.

make many sensitive API calls; thus, the maliciousness of SSG
of piggybacked app is higher than that of benign app.

As illustrated in Fig. 4, the median of the coefficients of
piggybacked apps is 1.341, which is higher than that of benign
apps (0.444) because they have fewer invocations of sensitive
APIs. This result proves that our assumption I is tenable.
Obviously, scg(SSG) can effectively distinguish piggybacked
apps from benign ones.

2) Total Sensitive Distance of SSG—tsd(SSG): As men-
tioned in assumption II, the cohesion of sensitive APIs in
the rider is generally higher than that in the carrier. We use
tsd(SSG) to denote the cohesion of sensitive API nodes in
SSG, which is measured by the calling distances between
sensitive API nodes.

tsd(SSG) can be obtained with Eqs. (6) and (7), in which
sd(si ) denotes the average distance of sensitive API node si

to the other sensitive API nodes in SSG.

tsd(SSG) =
∑

si∈S NG(SSG)

sd(si ). (6)

sd(si ) = 1

|SNG(SSG)| − 1
∗

∑

s j ∈ SNG(SSG)
j 
= i

1

dis(si , s j )
.

(7)

As illustrated in Fig. 5, the median of tsd(SSG) of pig-
gybacked apps is 1.875, which is even higher than the upper
quartile of benign apps. This result indicates that assumption II
is tenable. Thus, the feature tsd(SSG) is effective to distin-
guish piggybacked apps from benign ones.

3) Total Number of Sensitive Motif Instances in SSG—
tnsm(SSG): We have attempted to obtain a more detailed

Fig. 6. An instance of sensitive motif-2 in SSG.

TABLE II

THREE-NODE MOTIFS AND THEIR CORRESPONDING SENSITIVE MOTIFS

view of the invocation patterns between sensitive API nodes
and normal nodes.

An invocation pattern reflects one malicious behavior
of an app, which can be depicted by a motif. Net-
work motifs are defined in terms of connectivity-patterns
that appear much more often than expected from pure
chance [36]–[38]. Specifically, they occur at a higher fre-
quency than what is expected from an ensemble of ran-
domized graphs with an identical degree structure. Given
that no mutual edges exist in SSG, four three-node motifs
are present. The four three-node motifs and their average
Z-score values in our samples are shown in TABLE II with
the help of gtrieScanner.8 The higher the Z-score is, the more
significant the three-node pattern is as a motif. The Z-score
of motif-4 is less than 0, which means that it rarely occurs in
SSG. Thus, it is ignored in our computation.

Sensitive motifs are defined in this work as significant
motifs that contain at least one sensitive API node. They are
shown in TABLE II. For example, the instance of sensitive
motif-2 in Fig. 6 denotes the malicious behavior of obtaining
the unique subscriber ID number by using an object rally/e
and invoking the getSubscriberId() API.

Under assumptions I and II, because of the larger number
and higher cohesion of sensitive APIs in the rider than in
the carrier, more instances of sensitive motif-1 occur in SSG.
In addition, in the rider, the sensitive APIs are invoked by
many user-defined threatening functions, which cause many
instances of sensitive motif-2 and sensitive motif-3. We use
tnsmk(SSG), k = 1, 2, 3, to denote the total number of sensi-
tive motif-k instances in SSG. Fig. 7 illustrates tnsmk(SSG)
for our benign and piggybacked apps, which demonstrates that
for all the three types of sensitive motifs, the corresponding
tnsmk(SSG) for piggybacked apps are higher than those for
benign apps.

8http://www.dcc.fc.up.pt/gtries/



FAN et al.: DAPASA: DETECTING ANDROID PIGGYBACKED APPS THROUGH SENSITIVE SUBGRAPH ANALYSIS 1779

Fig. 7. tnsm(SSG) for benign and piggybacked apps.

The features constructed from the SSGs of piggybacked
apps differ significantly from those of benign apps. DAPASA
embeds the above five features into a feature space to auto-
matically classify novel apps as piggybacked apps or not. The
feature space is represented as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

scg(SSG)

tsd(SSG)

tnsm1(SSG)

tnsm2(SSG)

tnsm3(SSG)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

V. EVALUATION

To evaluate the effectiveness of our approach, we first intro-
duce the dataset and the metrics (see Section V-A for details).
We then evaluate our approach based on the dataset and
compare the result with that of three baseline approaches (see
Section V-B for details). Afterward, we evaluate the run-time
overhead of our approach and compare it with that of the
baseline approaches (see Section V-C for details). Finally,
we analyze the effectiveness of our features and how they
complement the permission-based approaches and API-based
approahces (see Section V-D for details).

A. Dataset and Metrics

Our approach is evaluated on a large real-world dataset that
consists of Android benign apps and piggybacked apps.

The set of piggybacked apps contains 2,551 apps in 15 fam-
ilies. All the apps are piggybacked apps according to [1].
A total of 1,062 of the apps are downloaded from the Android
Malware Genome Project,9 which is widely used as a bench-
mark dataset for malware detection. We collect 1,489 more
piggybacked apps that belong to the piggybacked families [1]
from VirusShare based on our malware familial classification
approach that classifies each unlabeled malware into its cor-
responding family with a 96% classification accuracy [39].
An overview of the piggybacked apps in our dataset is given
in TABLE III.

The set of benign apps consists of two parts; one is collected
from Google Play and contains 12,001 apps in 16 categories,
and the other one is collected from Anzhi Market and contains

9http://www.malgenomeproject.org/

TABLE III

DESCRIPTIONS OF THE PIGGYBACKED APPS

TABLE IV

DESCRIPTIONS OF THE BENIGN APPS

32,920 apps in 10 categories. TABLE IV shows the descrip-
tions of apps from Google Play and Anzhi Market. All the
apps have been checked by VirusTotal10 to ensure that each
of them is benign. Over 50 anti-virus softwares programs,
such as AVG,11 ESET-NOD3212 and Norton,13 are available in
VirusTotal; these software programs are based on a signature
database. They are useful for known malware but less effective
for unknown ones.

The metrics used to measure our detection results are shown
in TABLE V. The goal of any malware detection research
is to achieve a high value for TPR and a low value for
FPR. We conduct the experiments in over 4,000 lines of

10https://www.virustotal.com/en/
11http://free.avg.com/us-en/homepage
12https://www.eset.com/us/
13http://cn.norton.com/
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TABLE V

DESCRIPTIONS OF THE USED METRICS

Fig. 8. Detection performances with four different classifiers

Java code on a quad-core 3.20 GHz PC operating on Ubuntu
14.04 (64 bit) with 16 GB RAM and 1 TB hard disk.

B. Piggybacked App Detection

1) Detection Performances With Four Classifiers: Four dif-
ferent classifiers are employed to evaluate our approach. These
classifiers are Random Forest [40], Decision Tree (C4.5) [41],
k-NN(k=1) [42] and PART [43]. All the 49,921 benign apps
and 2,551 piggybacked apps are mixed together. After the
extraction and analysis of the SSGs with our approach, each
app is first represented as a feature vector with Eq. (8). Then
the classification labels of the known piggybacked apps in
training dataset are attached with 1 while the labels of the
known benign apps are attached with -1 so that the classifiers
can understand the discrepancy between piggybacked apps and
benign apps. Once the feature vectors with classification labels
for the training samples are generated, four classifiers can
be trained with the four machine learning algorithms. After
that, the feature vector of a new sample without classification
label is fed into the classifiers to detect whether it is piggy-
backed or benign. Our dataset is evaluated via tenfold cross
validation.

The detection performances are shown in Fig. 8. The
Receiver Operating Characteristic (ROC) curves indicate that
all four classifiers can achieve a high value for TPR and a
low value for FPR. In particular, Random Forest performs

Fig. 9. Detection performances for DAPASA and three baseline approaches

best among four classifiers. With Random Forest, the detection
performance yields a TPR of 0.950 at an FPR of 0.007, and
the AUC is 0.99.

Two main reasons explain the best performance of Random
Forest in the current study’s dataset. First, Random Forest
is an ensemble classifier that uses out-of-bag errors as an
estimate of the generalization error to improve its performance,
whereas the other three classifiers are base classifiers. Second,
as introduced in the work of Breiman [40], Random Forest
does not result in overfitting as more trees are added but
produces a limited value of the generalization error. Therefore,
in this work, Random Forest is selected as the classifier in
subsequent experiments.

2) Comparison With Three Baseline Approaches: In this
section, DAPASA is compared with three baseline approaches
proposed by Wang et al. [13], Aafer et al. [28], and
Gascon et al. [21]. The descriptions of the three baseline
approaches are shown below.

• Wang et al. [13] proposed an approach for malware
detection based on requested permissions, which are
security-aware features that restrict the access of apps to
the core facilities of devices.

• Aafer et al. [28] proposed an approach for malware detec-
tion based on APIs that have more fine-grained features
than permissions because each permission governs several
APIs. Furthermore, API level information conveys more
substantial semantics about the app than permissions [28].

• Gascon et al. [21] proposed an approach for malware
detection based on embedded call graphs, which model
the structural composition of a code and reflect the logic
semantics of the app. The call graph is more robust
against certain obfuscation strategies than the requested
permissions and APIs.

The detection performances of our approach and the
three baseline approaches in our dataset are illustrated
in Fig. 9. The AUC values of our approach and API-
based approach [28] are both 0.99, which indicates that our
approach has a similar detection performance with API-based
approach. Moreover, our approach outperforms the other two
baseline approaches [13], [21], of which the AUC values
are 0.983 and 0.986, respectively. In particular, our approach
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Fig. 10. Run-time overhead of DAPASA

contains only five numeric features; the three approaches use
88 permission-based features, 680 API-based features, and
32,768 graph-based features, respectively.

C. Evaluation of Run-Time Overhead

1) Run-Time Overhead of DAPASA: Our approach consists
of three main procedures when analyzing a new app.

(i) De-compilation. The app file is disassembled to gener-
ate the Dalvik code, and SFCG is constructed.

(ii) Graph analysis. The SFCG is divided into a set of
subgraphs, and the SSG with the highest sensitivity
coefficient is selected.

(iii) Feature construction. Five numeric features are con-
structed from the generated SSG.

The run-time overheads of the three main procedures and their
total run-time overhead are illustrated in Fig. 10, in which the
x-axis shows the sample size (number of nodes) per app in
our dataset and the y-axis shows the run-time overhead of the
corresponding procedure.

Four observations are obtained from Fig. 10.
(1) The run-time overhead of de-compilation is not related

to the sample size. This result is consistent with the truth that
the complexity of de-compilation has a positive correlation
with the logic of the source code for a given app rather than
the sample size [44].

(2) The run-time overhead of graph analysis roughly scales
linearly with the sample size. As introduced in algorithm 1,
the time complexity is O(m×n), where m denotes the number
of invoked sensitive API nodes and n denotes the size of the
call graph.

(3) The run-time overhead of feature construction is not
related to the sample size. In our approach, SSG is generated
to represent the entire call graph. Therefore, the run-time
overhead of feature construction scales with the size of SSG
rather than the size of the call graph.

(4) The total run-time overhead of analyzing a given app has
positive relation with sample size. It is mainly affected by the
procedure of de-compilation with a relatively small sample
size. With the increase in sample size, the total run-time
overhead is mainly affected by the graph analysis procedure.
On the average, less than 16s is consumed to complete the
analysis for most apps in our dataset.

2) Comparison of Run-Time Overhead: The comparison of
the run-time overheads of our approach and the three baseline
approaches is illustrated in Fig. 11. DAPASA consumes 1.8s

Fig. 11. Comparison results of run-time overhead.

and 4.6s less time than the approach of Gascon et al. [21]
in graph analysis and feature construction, respectively. The
smaller run-time overhead is due to the following reasons.

First, for the graph analysis procedure, in the approach of
Gascon et al. [21], a hash-value is calculated for each node in
the graph. Analyzing all the nodes consumes more time than
our approach does because our approach only focuses on the
analysis of sensitive API nodes.

Second, for the feature construction procedure, in the
approach of Gascon et al. [21], a feature map is inspired by
graph kernels, which allows for embedding call graphs in a
vector space. However, our approach generates SSG to repre-
sent the entire call graph. Hence, computational complexity is
reduced effectively.

The approaches of Wang et al. [13] and Aafer et al. [28]
do not have the graph analysis procedure. Therefore, they are
faster than DAPASA and the approach of Gascon et al. [21],
which are based on the analysis of the call graph. Permission-
based and API-based approaches usually produce only a small
run-time overhead, and they are efficient and scalable. How-
ever, the features of permissions and APIs are coarse-grained.
For example, malicious apps may request the exact same
permissions that are requested by benign apps. By contrast,
our features are more fine-grained and thus provide better
explanation of the results, as discussed in Section VI-B.

D. Analysis of Features

1) Effectiveness of Each Feature: In this work, we propose
three different types of features, namely, scg, tsd , and tnsm
(consisting of tnsm1, tnsm2 and tnsm3) to distinguish the
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Fig. 12. Detection performances with different feature combination.

Fig. 13. Detection performances for different feature sets.

SSGs existed in piggybacked apps from those existed in benign
apps. As mentioned in Section IV-C, each of them has a fairly
good ability to detect piggybacked apps in different aspects,
such as maliciousness and cohesion of sensitive APIs. In this
section, different combinations of features are evaluated in the
same dataset to determine whether each feature is significant
for the detection performance. Only scg is initially used as our
feature. Afterward, the other two types of features are added
to our feature space successively.

As illustrated in Fig. 12, the ROC curves with different
feature combinations show that every additional feature effec-
tively improves the detection performance. The TPR reaches
nearly 0.85 with an 0.01 FPR using only scg, and it is
improved by 0.05 and 0.061 by adding tsd and tnsm. The
improvements of TPRs demonstrate that each proposed feature
has significant contributions for piggybacked app detection.

2) Complementation of Existing Approaches: Five features
are constructed from a new perspective of the invocation
structure. We combine five features with the permission-based
features proposed by Wang et al. [13] and API-based features
proposed by Asfer et al. [28], respectively. The detection
performances of the four different feature sets are illustrated
in Fig. 13, in which P denotes the 88 permissions, S denotes
the 680 APIs, D+P denotes the combination of our five
features with permissions, and D+S denotes the combination
of our five features with APIs.

As illustrated in Fig. 13, after the combination of our
five features, the detection performances measured with ROC
curves are improved. When the FPR is set to 0.01, the TPRs
with feature D+P and with feature D+S are improved by

TABLE VI

FEATURE RANKING OF OUR FEATURES IN THE FEATURE
FEATURE D+P AND FEATURE D+S

0.085 and 0.008 compared with those with only feature P
and feature S, respectively. Therefore, our approach can
complement the permission-based approaches and API-based
approaches from a new perspective of the invocation structure.

Moreover, the contribution degrees of our five features are
evaluated with three different types of metrics, namely, chi-
square statistic [45], OneR classifier [46], and information
gain [47], for the two combined feature sets (D+P and D+S)
containing 93 and 685 features, respectively. The result in
TABLE VI shows that the five features have better contribu-
tions to classify piggybacked apps than most permission-based
and API-based features especially scg and tnsm1.

VI. DISCUSSIONS

In this section, we first inspect the reasons of the generation
of false positive instances. Then we introduce the explanations
of the detection results for DAPASA. After that, the ability
of DAPASA to fight against obfuscation attacks is discussed.
Finally, we present some limitations of our approach.

A. Discussions on TPR and FPR

The experiments show that our approach achieves good
performance with a TPR of 95% and an FPR of 0.7%. Manual
analysis of the SSGs of our piggybacked apps shows that
DAPASA achieves a 100% detection rate in several families,
such as Geinimi. The invocation patterns of sensitive APIs in
the generated SSGs for all the Geinimi samples are exactly
the same as that of the example introduced in Section III.
However, the TPRs are lower than 92% in several families,
such as DroidKungFu, which is considered one of the most
sophisticated Android malware. DroidKungFu is piggybacked
and distributed in the forms of legitimate apps. Several
samples implement their malicious functionalities in native
code (instead of the previously Davilk code based on Java).
In this work, the native code is ignored, thus resulting in the
lower accuracy for such families.

Although the TPR is impressive, the FPR is 0.7% which
means that there are still more than 300 benign apps are
incorrectly classified as piggybacked apps. Two main reasons
explain the incorrectly classified samples. First, with the help
of LibD [35] we are able to remove most nodes invoked
by third-party libraries with a string matching algorithm.
However, covering all third-party libraries is still a challenge.
Second, several extreme cases which are repackaged with
only one sensitive API (sendTextMessage) exist. When these
extreme cases are placed in the training dataset, the benign
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apps using the same sensitive API as the extreme cases
do might be classified as piggybacked. For example, in the
Game category, sending a message to a premium number to
raise money is a legitimate payment method for unlocking
game features, and the apps that use this method would be
incorrectly classified.

B. Explanations of the Detection Results
Explanations of the detection results are also important

for malware detection. For permission-based and API-based
approaches, even if they usually produce only a small run-
time overhead and are efficient and scalable, they do not
provide reasonable explanations for their decisions and are
thus unclear to the practitioner. However, DAPASA is based
on the analysis of the call graph that contains the neces-
sary structure information to depict app behaviors. DAPASA
constructs an SSG to profile the most suspicious behavior
of the given app, thus providing better explanations of the
decisions than permission-based and API-based approaches.
For example, in our experiments, all the SSGs constructed
from the 94 members of the Geinimi family are nearly the
same. More concretely, we introduce the meanings of our
constructed features for SSG in Fig. 2.

scg = 1.404. Six sensitive APIs are in the subgraph; three
of them (getLine1Number(), getSubscriberId(), and getSim-
SerialNumber()) have high scss and low ranks, as shown
in TABLE I. Its scg is much higher than the median in
benign apps, which is only 0.444 (illustrated in Fig. 4). The
descriptions of the six invoked sensitive APIs indicate that the
module in which SSG is located is probably used to collect
user’s sensitive information.

tsd = 3. All the calling distances between sensitive API
nodes are 2; this means that they are continually invoked in
the same method to collect user’s sensitive information. This
conclusion is demonstrated in the corresponding source code
of the app.

Each sensitive motif has its own meaning. For example,
the instance of sensitive motif-2 in Fig. 6 denotes the malicious
behavior of obtaining the unique subscriber ID number by
using an object rally/e and invoking the getSubscriberId() API.
In summary, the instances of sensitive motifs illustrate the
detailed invocations of sensitive APIs of an app.

C. Resilience to Obfuscation Attacks
In order to evaluate whether our approach could be robust

against obfuscation attacks mentioned in [48], we conduct
two widely used tools, Proguard14 and SandMarks15 intro-
duced in [48], to obfuscate the APK samples. Proguard is
able to rename the classes, fields, and methods using short
meaningless names. SandMarks is a very comprehensive tool,
which implements 39 obfuscation algorithms, such as con-
stant pool reorder, reorder parameters and method merger.
We then calculate the similarities of generated SSGs between
the original apps and obfuscated apps. The similarities are
still 1 which demonstrates that our approach is robust against

14https://www.guardsquare.com/en/proguard
15http://sandmark.cs.arizona.edu/

the typical obfuscation attacks (e.g., renaming functions). The
main reason is that our approach is based on the analysis
of sensitive subgraph, which does not consider the names of
methods and parameters. However, the advanced obfuscation
attacks that change the invocation relations among functions
have side effects for our approach.

D. Limitations of DAPASA
Similar to any empirical approach, our approach is subject

to several limitations, which are listed below.
1) Encryption and Reflection: By analyzing the call graph

of the app, our approach is resilient to typical local obfuscation
techniques [48], [49], such as renaming of the user-defined
functions and packages, instruction reordering, and branch
inversion. However, it is vulnerable to certain obfuscation
techniques, such as encryption [50], [51] and refection [12].
Once the malware code is encrypted, it is difficult to obtain the
source code of the app with decompile tools and construct the
call graph. In addition, the reflection techniques can simply
hide away the edges in the call graph, such as the invoking
method with the function getMethod(String name) where the
argument name denotes the name of the callee method.

2) Sensitive APIs: Our detection of sensitive APIs relies
on the mapping by PScout [30], which now, five years later,
may be partially outdated. Incorrect or missing entries in the
mapping would make DAPASA miss or misclassify relevant
app behaviors.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed DAPASA that focuses on pig-
gybacked app detection through sensitive subgraph analysis.
First, two assumptions were proposed to better profile the
differences between the rider and carrier in piggybacked apps
with respect to the invocation patterns of sensitive APIs.
Second, an SSG was generated for each app to profile its most
suspicious behavior. Third, five features were constructed from
the SSG and fed into machine learning approaches to detect
piggybacked apps.

Extensive evaluation results demonstrate that our approach
achieves an impressive detection performance with only five
numeric features which bring three advantages. First, our
approach outperforms the state-of-the-art approaches with less
features. Second, our approach provides better explanations
of detection results than permission-based approaches and
API-based approaches. Third, our approach even complements
permission-based approaches and API-based approaches with
the combination of our features from a new perspective of the
invocation structure.

The work presented in this paper can be improved by
building a more detailed behavior model than SFCG. Addi-
tional information, such as components of the app and type of
invocations, would be required to help improve the detection
accuracy of Android piggybacked apps.
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