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Android Malware Familial Classification and
Representative Sample Selection via

Frequent Subgraph Analysis
Ming Fan , Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and Ting Liu

Abstract— The rapid increase in the number of Android
malware poses great challenges to anti-malware systems, because
the sheer number of malware samples overwhelms malware
analysis systems. The classification of malware samples into
families, such that the common features shared by malware
samples in the same family can be exploited in malware detection
and inspection, is a promising approach for accelerating malware
analysis. Furthermore, the selection of representative malware
samples in each family can drastically decrease the number
of malware to be analyzed. However, the existing classification
solutions are limited because of the following reasons. First, the
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legitimate part of the malware may misguide the classification
algorithms because the majority of Android malware are
constructed by inserting malicious components into popular apps.
Second, the polymorphic variants of Android malware can evade
detection by employing transformation attacks. In this paper,
we propose a novel approach that constructs frequent subgraphs
(fregraphs) to represent the common behaviors of malware
samples that belong to the same family. Moreover, we propose
and develop FalDroid, a novel system that automatically classifies
Android malware and selects representative malware samples in
accordance with fregraphs. We apply it to 8407 malware samples
from 36 families. Experimental results show that FalDroid can
correctly classify 94.2% of malware samples into their families
using approximately 4.6 sec per app. FalDroid can also dra-
matically reduce the cost of malware investigation by selecting
only 8.5% to 22% representative samples that exhibit the most
common malicious behavior among all samples.

Index Terms— Android malware, frequent subgraph, familial
classification.

I. INTRODUCTION

IN THE third quarter of 2016, Android, the most popu-
lar mobile operating system, accounted for 86.8% of the

market share of smartphones [1]. Meanwhile, it has become
the major target of 97% of mobile malware [2]. A recent
security report shows that on average, 38,000 new mobile
malware samples were captured per day during the third
quarter of 2016 [3]. The analysis of each malware sample
requires ample time [4]–[6]. Hence, the sheer number of
malware samples overwhelms malware analysis systems.

The majority of new malware samples are polymorphic vari-
ants of known malware [7], [8]. Thus, to accelerate malware
analysis, we can classify malware samples into various fami-
lies and then select representative samples from each family.
However, the familial classification of Android malware is
challenging because of two reasons.

First, the accurate separation of malicious components and
the legitimate part from the majority of Android malware,
which are repackaged popular apps, is nontrivial [9]–[12].
Zhou and Jiang [7] found that 86% of Android malware
samples are repackaged apps produced by injecting malicious
components into legitimate apps. The injected malicious com-
ponents are hidden within the functionalities of popular apps
and usually constitute only a small portion of the repackaged
apps. Differentiating between the legitimate part and malicious
components of malware is difficult for existing features, such
as system calls [13] and sensitive path [14].

Second, polymorphic variants of Android malware that
belong to the same family perform the same malicious
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Listing 1. Different implementations of the same functionality in two
malware samples within geinimi family.

activities with different implementations. Therefore, such
malware can easily evade existing classification solu-
tions [15], [16] that seek an exact match of a given
specification. For example, Listing 1 illustrates different imple-
mentations of the same functionality (i.e., obtain device id,
phone number, and voice mail number) in two malware
samples. The two malware samples belong to the same family,
geinimi. These bot-like malware samples steal personal infor-
mation and send it to a remote server. Three major differences
(highlighted in red) are observed in the two implementations.
First, the structures of class names are different. Second,
the arguments of the two functions are different. One takes
a service (Lcom/geinimi/Adservice), one of the four basic
components of Android apps, as an argument. By contrast,
the other uses an object of the class rally/e as an argument.
Third, the former function contains two more statements
(including one invocation) than the latter.

To address the above challenges, we propose a novel
approach that exploits the following two observations:

Observation 1: Android malware usually invokes sensitive
application program interface (API) calls that operate on sensi-
tive data to perform malicious activities. For example, the mal-
ware samples presented in Listing 1 invoke getLine1Number()
to obtain the phone number of users.

Observation 2: Malware and its variants within the same
family invoke sensitive API calls by following similar pat-
terns even if their codes may be obfuscated. As illustrated
in Listing 1, three commonly invoked sensitive API calls
(i.e., getDeviceId(), getLine1Number(), and getVoiceMailNum-
ber()), which are highlighted in blue, exist in the two methods
of different malware samples. The three sensitive API calls
are sequentially invoked in the two methods, thus illustrating
a similar pattern of sensitive API calls in different samples
within the same family.

By exploiting the above two observations, we first distill
program semantics into function call graph (FCG) repre-
sentation and assign different weights to different sensitive
API calls with a term frequency-inverse document fre-
quency (TF-IDF)-like approach (see Section II-A for details).
TF-IDF is a numerical statistic that evaluates the importance
of a word to a document in a collection or corpus.

Then, we propose two key techniques to solve the chal-
lenges (see Section II-B for details), as follows: 1) We propose
a clustering-based approach to extract common malicious
behavior in each family and to address the inaccurate sep-
aration of malicious components and the legitimate part of

repackaged apps. Thus, we can reduce the side-effects of the
legitimate part in the malware. 2) For the different imple-
mentations of the same functionality, we propose a weighted-
sensitive-API-call-based graph matching approach to calculate
the similarity between graphs generated by community detec-
tion algorithms. Community detection algorithms are used to
determine whether or not a graph has community structure
if the nodes of the graph can be easily grouped into sets
of nodes, such that each set of nodes is internally densely
connected. Our approach can detect homogeneous malicious
behavior while tolerating minor differences in implementation,
such as function renaming and junk-code insertion. Sensi-
tive API calls constitute only a small portion of the entire
Android API calls, and they cannot be easily obfuscated by
existing typical obfuscation techniques, whereas the names
of user-defined functions are usually obfuscated as a, b,
or c.

To represent common malicious behaviors shared by mal-
ware samples within the same family, we construct frequent
subgraphs (fregraphs), which are novel graph-based features
extracted from generated FCGs, on the basis of two key
techniques. Moreover, we propose and develop FalDroid,
an automatic system for classifying Android malware and
selecting representative samples of each family in accordance
with fregraphs, in 8,100 lines of Java code and 900 lines of
Python code. We apply FalDroid to 8,407 malware in 36 dif-
ferent families and find that it exhibits impressive familial
classification performance. Moreover, it can effectively reduce
workload and accelerate malware analysis.

In summary, our major contributions include the following:
(i) We propose fregraph, a novel graph-based feature,

to represent the common behavior of malware within
the same family. We then employ fregraph to con-
duct familial classification and representative malware
selection.

(ii) We propose a novel weighted-sensitive-API-call-based
graph matching approach that can detect the homo-
geneous malicious behavior of malware within the
same family while tolerating minor differences in
implementation.

(iii) We design and implement FalDroid, a novel system
that can handle the familial classification of large-scale
Android malware with high accuracy and effectively
decrease the number of malware to be analyzed.

(iv) We conduct extensive experiments to evaluate FalDroid.
Our results show that FalDroid can achieve 94.2% accu-
racy and only requires approximately 4.6 sec to process
an app. Moreover, it can also dramatically decrease the
cost of malware investigation by selecting only 8.5%
to 22% of representative samples that present the most
malicious behavior among all samples.

The remainder of this paper is organized as follows. The
methodology of FalDroid is detailed in Section II, and its two
usages are presented in Section III. The experimental results
are reported in Section IV. After providing a discussion of
the limitations of FalDroid in Section V, we introduce related
work in Section VI. We conclude the paper with a discussion
of future work in Section VII.
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Fig. 1. The overall architecture of FalDroid: (1) Preprocessing stage contains three processes, weight assignment (Section II-A1), FCG construction
(Section II-A2), and SARG construction (Section II-A3); (2) Fregraph Generation stage contains three processes, community detection (Section II-B1),
subgraph matching (Section II-B2), and subgraph clustering (Section II-B3); (3) Feature Construction stage (Section II-C).

II. METHODOLOGY OF FALDROID

Fig. 1 shows the overall architecture of FalDroid, which
consists of three main stages.

The Preprocessing stage constructs the basic behavior
model for each app, and it contains three processes. First, dif-
ferent weights are assigned to each sensitive API call by using
a TF-IDF-like approach to differentiate their corresponding
importance given that the importance of the sensitive API calls
differs across different families. Second, to depict the program
semantics of an app, an FCG is constructed to represent the
app on the basis of its disassembled code. Third, given that
the direct analysis of the FCG is time consuming because it
usually contains thousands of nodes, the FCG is simplified into
a sensitive API call related graph (SARG) (Definition 1) by
retaining only sensitive API call nodes and their parent nodes.
Therefore, the malicious behaviors of the apps are maintained,
whereas the complexities of the graph models are reduced.

In the Fregraph Generation stage, fregraphs are produced
to denote the common malicious behaviors shared by mal-
ware within the same family. To easily locate the common
functionalities of different malware and reduce the complex-
ity of graph similarity calculation, the SARG is initially
divided into a set of subgraphs using community detection
algorithms [17]–[20]. Specifically, subgraphs with sensi-
tive API call nodes are designated as sensitive subgraphs
(Definition 2). Using subgraph matching and clustering tech-
niques, the sensitive subgraphs used by most samples in one
family are defined as the fregraphs (Definition 3) of a specific
family.

In the Feature Construction stage, a feature vector is con-
structed for each app. On this basis, known machine learning
algorithms can be applied to perform the familial classification
task. To this end, the fregraphs of all known families are
embedded in a feature space, and each fregraph is assigned
with a weighted score to indicate its significance for malware
familial analysis.

A. Preprocessing

Android apps are normally written in Java and compiled to
Dalvik code (DEX) stored in a classes.dex file. The compiled
code and the required resources are packaged into an APK file.
We can obtain the Dalvik code from the APK by using
disassemble tools (e.g., apktool [21]).

Android malware usually invokes sensitive API calls that
operate on sensitive data to perform malicious activities.
We employ the result reported by [22] to obtain a set of
sensitive API calls. A total of 26,322 sensitive API calls are
available.

1) Weight Assignment of Sensitive API Calls: To differenti-
ate the importance of sensitive API calls, we assign different
weights to each sensitive API call in different families. In par-
ticular, we define three metrics for each sensitive API call s
in family f to characterize its usages in different families.

• num(s, f ): number of samples that invoke the sensitive
API call s in family f .

• per(s, f ): percentage of samples that invoke the sensitive
API call s in family f , per(s, f ) = num(s, f )

f alNum( f ) , where
f al Num( f ) denotes the number of samples in f .

• w(s, f ): weight of sensitive API call s in family f .
In addition, we use all Num to denote the number of all
collected samples and total Num(s) to denote the number
of samples that invoke s in all families; total Num(s) =∑

f j∈F num(s, f j ), where F = { f j |1 ≤ j ≤ m} denotes the
set of all families, and m denotes the number of families.

We collect 8,407 malware samples in 36 families from
Virusshare [23] for evaluation. TABLE I lists the total Num
of six sensitive API calls and their num, per and w in three
different families. We observe that the usages of different sen-
sitive API calls in the same family are different. For example,
sendTextMessage() is used by all 105 samples in the geinimi
family, whereas divideMessage() is used by only six samples.
Moreover, some sensitive API calls (e.g., getDeviceId()) are
used by most malware samples.

The two observations indicate that the weight of a sensitive
API call in one family should be positively related with its per
and be negatively related with its total Num. By borrowing
the idea of TF-IDF [24], we propose a TF-IDF-like approach,
which allows the TF to measure the frequency of sensitive
API call s that appears in family f , and IDF to measure the
inverse frequency of s that appears across all malware samples.
Then, the weight of sensitive API call s in family f is defined
as follows:

w(s, f ) = per(s, f ) ∗ log
all Num

total Num(s)
. (1)

TABLE I shows that the weight of sendTextMes-
sage() is 0.567 in the geinimi family, whereas that of
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TABLE I

SIX SENSITIVE API CALLS’ totalNum AND THEIR CORRESPONDING num , per AND w IN THREE FAMILIES (allNum = 8, 407)

divideMessage() is only 0.080 because the per of send-
TextMessage() is considerably higher than that of divideMes-
sage(). Moreover, getDeviceId() is used by all samples in the
three families. Thus, it is less important than the others for
malware classification, and its weight is only 0.083, which is
considerably less than the weights of the other sensitive API
calls. Intuitively, the results show that the weight assignment
of our approach can effectively measure the importance of a
sensitive API call to one family.

2) Construction of FCG: After applying apktool [21] to
APK files, we can obtain the corresponding Dalvik code.
Then, we extract the callers and the callees from the
Dalvik code by identifying the invocation statements, such as
“invoke-direct.” Then, we add the callers and callees as nodes
in a graph and insert an edge between two nodes if a function
call relation exists between them. Thus, we can abstract the
program semantics of an app into an FCG representation,
which contains the necessary structural information to profile
the behaviors of an app. The FCG is represented as a directed
graph G = (V , E).

• V = {vi |1 ≤ i ≤ n} denotes the set of functions invoked
by an app, where each vi ∈ V indicates a function name.

• E ⊆ V × V denotes the set of function calls, where edge
(vi , v j ) ∈ E indicates that a function call exists from the
caller function vi to the callee function v j .

3) Construction of SARG: Thousands of nodes are found in
the FCG. Analyzing the entire FCG is neither effective (e.g.,
the malicious part is hidden in the legitimate part) nor efficient
(e.g., excessive number of nodes and edges to analyze). Thus,
we exclude nodes with no paths to sensitive API call nodes
to reduce the complexity of graph analysis, and FCG G is
then simplified into the SARG G′. We designate the nodes
that represent sensitive API calls as sensitive API call nodes.

Definition 1 (SARG): It is an induced subgraph of FCG
and is maximal with respect to the number of nodes, where
each node has at least one directed path to sensitive API call
nodes, or the node itself is a sensitive API call node.

SARG G′ = (V ′, E ′) can be obtained using Eqs. (2) and
(3), where Vs ⊆ V is the set of sensitive API calls invoked by
the app, and the function dis(v j , vi ) returns the length of the
shortest path length from node v j to node vi .

Vg = {v j |∃vi ∈ Vs , 0 < dis(v j , vi ) < n, v j ∈ V } (2)

V ′ = Vs ∪ Vg, E ′ = (V ′ × V ′) ∩ E (3)

In general, the size of SARG is reduced by approximately
72% compared with that of the original FCG (see Section IV-E
for details). Fig. 2 presents the original FCG (2,000 nodes) of

Fig. 2. The original FCG (left) of a geinimi sample and its generated
SARG (right).

a malware in the geinimi family and its SARG (450 nodes),
where red nodes denote sensitive API call nodes and blue
nodes denote general nodes. The red edges indicate that their
callee functions are sensitive API call nodes.

B. Fregraph Generation

This section describes the two key techniques pre-
sented in this work, namely, a clustering-based approach
to extract the common malicious behaviors of each family
(Sections II-B1 and II-B3) and a weighted-sensitive-API-call-
based graph matching approach to calculate the similarity
between subgraphs generated with community detection algo-
rithms (Section II-B2).

1) Community Detection: After the Preprocessing stage,
we obtain the following observations from the generated
SARGs of the same family. Apps in the same family have
similar subgraphs, which constitute only a small portion of
SARGs even if a large portion of their SARGs is different. The
small portion of the generated SARG represents the common
malicious functionalities of malware samples within the same
family, whereas the other large portion of SARGs represents
different legitimate functionalities.

Fig. 3 presents the SARGs of two different samples in the
geinimi family. The two SARGs contain 267 and 715 nodes.
The subgraphs marked with red circles are nearly identi-
cal, indicating similar behaviors, whereas the other parts are
entirely different. The direct identification of similar subgraphs
from SARGs is inefficient because the graph isomorphism
problem is NP complete [25]. Hence, we divide the SARGs
into a set of smaller subgraphs to easily locate the common
functionalities of different malware samples and reduce the
complexity of graph similarity calculation.

As introduced in [18] and [26], a major network feature
is the community structure, which refers to the gathering of
vertices into groups such that a higher density of edges exists
within groups than between groups. Previous studies [27], [28]
have demonstrated that FCG is a typical network with commu-
nity structures. Software functions in one community structure
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Fig. 3. SARGs of two malware samples in the geinimi family. Three similar
subgraphs marked with red circles indicate the similar behaviors.

Fig. 4. CDF of modularity Q with infomap algorithm.

have strong connections and are frequently located in the same
class or package to realize collective software functionalities.

To determine whether or not our generated SARGs are
networks with community structures, we adopt four widely
used community detection algorithms, including infomap [17],
fast greedy [18], fast partitioning [19], and multilevel [20],
to divide SARGs into a set of subgraphs. We implement
the algorithms using Networkx [29], which is a package for
computation of complex networks. We select infomap [17] as
the main community detection algorithm in the experiments
given that it generates more subgraphs with fewer nodes than
the other three algorithms, thereby effectively reducing the
complexity of graph matching.

Newman and Girvan [26] proposed the concept of mod-
ularity Q to quantify the quality of a detected community
structure. No community structure is found when the value of
Q approaches 0. On the contrary, an ideal community structure
is obtained when Q is close to 1. We evaluate the generated
SARGs in our dataset using the infomap algorithm. Fig. 4
shows the cumulative distribution function (CDF) of modular-
ity Q. More than 90% of Q values range from 0.6 to 0.8. The
range demonstrates that the generated SARGs have significant
community structures.

Moreover, given that most subgraphs divided by community
detection algorithms have no relation with sensitive data, they
might provide little help for malware classification. Therefore,
we define the sensitive subgraph.

Definition 2 (Sensitive Subgraph): It is a subgraph divided
from SARG using the community detection algorithm and
contains at least one sensitive API call node. No common node
exists in any two sensitive subgraphs from the same SARG.

Sensitive subgraph sg in family f has a weighted value
w(sg, f ), as defined in Eq. (4), to denote its importance to f .
Vs(sg) is the set of sensitive API call nodes in sg.

w(sg, f ) =
∑

vi∈Vs(sg)

w(vi , f ) (4)

2) Subgraph Matching: To quantify the similarity of two
sensitive subgraphs, we propose a novel weighted-sensitive-

Fig. 5. Two subgraph examples sg1 and sg2 in family f .

API-call-based approach that can detect the homogeneous
app behavior of malware within the same family and can
tolerate minor differences in implementation.

Fig. 5 presents two subgraph examples sg1 and sg2 in
family f . Both subgraphs contain three sensitive API call
nodes, v1, v2 and v3. We assume that the three nodes are
assigned with weights 0.2, 0.5, and 0.8 on the basis of our
TF-IDF-like approach. To calculate the similarity of sg1
and sg2 in family f , we focus on the similarities between their
sensitive API call nodes because such nodes cannot be easily
changed by typical obfuscation techniques. The similarity
between the same sensitive API call nodes in two subgraphs
is calculated on the basis of their structural equivalence. The
structural equivalence hypothesis [30] states that nodes with
similar structural roles in subgraphs should be collectively
and closely embedded in the same feature space. Specifically,
the similarity sim f (sg1, sg2) is calculated in three steps.

Step 1 (Construct Distance Matrices for Two Subgraphs):
We initially construct a distance matrix for each subgraph,
which is used to measure the relations among different sen-
sitive API call nodes in the specific subgraph. The matrix
of sgk (k = 1, 2) is obtained through Eq. (5), and its size
is t × t, t = |Vs(sg1) ∪ Vs(sg2)|. In Eq. (5), the graph is
regarded as an undirected graph when calculating the shortest
path length dis′(vi , v j ) between two nodes vi and v j .

Matri xk[i, j ] =
{

dis′(vi , v j ) vi , v j ∈ Vs(sgk)

∞ otherwi se
(5)

For the two subgraphs presented in Fig. 5, the sizes of the
two constructed distance matrices are 3 × 3 as calculated in
step 1. Matri x1[1, 3] = 2 whereas Matri x2[1, 3] = 3 given
that an additional normal node exists in the path between v1
and v3 in sg2 compared with that in sg1.

Step 2 (Calculate the Similarity of Sensitive Nodes): To
formalize the structural role of a sensitive API call node in
a subgraph, we embed it into a vector with t dimensions
through Eq. (6). The value for each dimension is calculated
on the basis of the shortest path distance between the current
sensitive API call node and other sensitive API call nodes.
Then, the similarity of the same sensitive API node in sg1 and
sg2 is denoted as ns(vi ) and is measured through a standard
cosine metric in Eq. (7).

−−−−−−−→
vec(vi , sgk) = 〈 1

Matri xk(i, 1)
, . . . ,

1

Matri xk(i, t)
〉 (6)

ns(vi ) = cos(
−−−−−−−→
vec(vi , sg1),

−−−−−−−→
vec(vi , sg2)) (7)

The vectors of v1 in the two subgraphs presented in Fig. 5
are

−−−−−−−→
vec(v1, sg1) = 〈0, 1

2 , 1
2 〉 and

−−−−−−−→
vec(v1, sg2) = 〈0, 1

2 , 1
3 〉 with
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step 2. Therefore, ns(v1) = 0.98 on the basis of the standard
cosine metric. Similarly, ns(v2) = 0.98 and ns(v3) = 1.0.

Step 3 (Calculate the Similarity of Subgraphs): We calculate
sim f (sg1, sg2) with a normalized weighted sum of the cosine
distances among nodes in the intersection of two subgraphs
given that each sensitive API call node is assigned with a
weight to indicate its importance to a specific family f . The
computation is as follows:

sim f (sg1, sg2) =
∑

vi ∈Vs(sg1)∩Vs(sg2)
(w(vi , f ) ∗ ns(vi ))

∑
vi∈Vs(sg1)∪Vs(sg2)

w(vi , f )
.

(8)

Therefore, the similarity of the two subgraphs presented
in Fig. 5 is sim f (sg1, sg2) = 0.98∗0.2+0.98∗0.5+1.0∗0.8

0.2+0.5+0.8 = 0.99.
The similarity ranges from 0 to 1. The maximum value 1 indi-
cates that the two subgraphs exhibit the exact same behavior,
whereas the minimum value 0 indicates that the two subgraphs
exhibit entirely different behaviors. The examples demonstrate
that our subgraph similarity calculation approach can well
tolerate minor differences of implementation.

3) Subgraph Clustering: With the effective and efficient
graph matching approach, we generate fregraphs on the basis
of subgraph clustering without prior knowledge.

Algorithm 1 Clustering of Sensitive Subgraphs
Input:

SG f // SG f denotes the set of sensitive subgraphs in
family f .
ε = 0.8 // ε denotes the similarity threshold value.

Output:
C // C denotes the set of output clusters and each cluster
contains a set of similar sensitive subgraphs.

1: p = 1, c1 = {sg1}, C = {c1}
2: for each sgi,i �=1 in SG f do
3: c′ = argmaxc j ∈C sim f (sgi , c j )

4: if sim f (sgi , c′) ≥ ε then
5: c′ = c′ ∪ {sgi }
6: else
7: p = p + 1, cp = {sgi }, C = C ∪ {cp}
8: end if
9: end for

10: return C

Algorithm 1 lists the steps of sensitive subgraphs clustering
with the input of a set of sensitive subgraphs in family f and
similarity threshold ε. The output of the algorithm is C , which
denotes a set of output clusters. Each cluster contains a set of
similar sensitive subgraphs. In the algorithm, sgi denotes the
i th subgraph element in SG f , and c j denotes the j th cluster
element in C . At first, C is initialized with only one cluster
c1 = {sg1}. Then, all the other subgraphs in SG f are
successively calculated to check whether a cluster exists in C ,
which the current subgraph can be added in. To this end,
we first calculate the similarities of the current subgraph sgi

with each cluster in C . The similarity of subgraph sgi with
cluster c j is denoted as sim f (sgi , c j ), which is obtained on
the basis of the average similarity of sgi with all the subgraphs

Fig. 6. A mapping between four fregraphs and three malware families.

in c j . Then, we select the cluster c′ that contains the highest
similarity with sgi . If the similarity is not less than ε, then
sgi is added in c′, or a new cluster that contains only sgi is
created and added in C .

ε is an important argument in Algorithm 1. To appropriately
set the parameter ε, we first manually construct the ground
truth called similar set, which consists of 50 similar
subgraphs. Then, we calculate the similarity of any two
subgraphs. To ensure that all subgraphs in our ground truth
can be placed into the same cluster, we select ε = 0.8 as the
similarity threshold for clustering subgraphs (see Section IV-F
for details).

Definition 3 (Fregraph): Given cluster c j ∈ C in family f
and minimum support threshold θ , a sensitive subgraph sg =
argmaxsgi∈c j

w(sgi , f ) is regarded as a fregraph when its

support sup f (sg) = |c j |
f alNum( f ) is not less than θ .

C. Feature Construction

To enable malware familial analysis, all fregraphs in
known families are embedded into a feature space, and each
fregraph f g is assigned with a weighted score f s to denote
its significance to malware familial analysis.

Mapping exists between fregraphs and families given that
some fregraphs belong to more than one family. Fig. 6 shows
an example of such mapping between four fregraphs and
three malware families. The number between a fregraph and
a family is defined as the support of the fregraph to its
corresponding family. The fregraphs that belong to several
families (e.g., f g2) should have lower significance to malware
familial analysis than fregraphs that belong to only one family
(e.g., f g3) because the latter provide more useful information
than the former.

We define the weighted score of fregraph f g as follows:

f s( f g) = cb′( f g) ∗
∑

f j ∈F

w( f g, f j ) ∗ p( f j | f g), (9)

where p( f j | f g) denotes the probability that the app belongs
to family f j when it contains fregraph f g. It is calculated
using Eq. (10) as follows:

p( f j | f g) = sup f j ( f g)
∑

fi∈F sup fi ( f g)
. (10)

cb′( f g) indicates the normalized entropy value of f g.
cb′( f g) is obtained through Eqs. (11)-(12), where cbmax

and cbmin denote the corresponding maximum and minimum
values, respectively. Specifically, cb′( f g) ranges from 0 to 1.
A high cb′( f g) indicates that f g belongs to few families.
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Fig. 7. An example of MSG.

If cb′( f g) = 1, then the fregraph belongs to only one family
(e.g., f g1, f g3 and f g4 in Fig. 6).

cb( f g) =
∑

f j ∈F

p( f j | f g) ∗ log p( f j | f g) (11)

cb′( f g) = cb( f g) − cbmin

cbmax − cbmin
(12)

III. USAGES OF FALDROID

To accelerate malware analysis, we leverage FalDroid to
classify a new malware sample into its family (Section III-A)
and identify representative malware samples from one family,
thereby reducing the analytical workload (Section III-B).

A. Familial Classification of Android Malware

FalDroid constructs a fregraph-based feature vector to rep-
resent each sample. Within the vector, the default value of
each fregraph-based feature is 0, and it will be set to the
weighted score when the sample contains this feature. For
known samples in the training dataset, their family labels are
attached to the feature vector. Then, a classifier is trained using
diverse machine learning algorithms. Subsequently, the feature
vector of a new malware sample without family label will be
placed into the classifier to obtain a family label.

B. Selection of Representative Malware Samples

The in-depth inspection of each sample in several families,
such as the fakeinst family, that contains excessive samples
(1,504 samples in our dataset) is inefficient. We prioritize the
inspection of representative malware samples from each family
to reduce the analytical workload and accelerate malware
analysis. Therefore, we initially construct a malware similarity
graph (MSG) to characterize the relationships among malware
samples within the same family.

Definition 4 (MSG): It is an undirected graph M SG f =
{MV , M E} for one malware family f .

• MV = {αi |1 ≤ i ≤ f al Num( f )} denotes the set of
malware samples in the family f , where each node αi ∈
MV indicates a malware sample.

• M E denotes the set of edges, where an edge (αi , α j )
indicates that the similarity between samples αi and α j

is higher than the threshold η.
One MSG contains several groups, where each group

denotes a connected subgraph in MSG. Notably, each node
in MSG only belongs to one group.

Fig. 7 shows an example of MSG with three groups
(i.e., groups A, B, and C) given that η = 0.8. The number
next to an edge denotes the similarity between the two

corresponding nodes. Each malware sample is represented as a
fregraph-based feature vector. The similarity of two malware
samples α1 and α2 is calculated on the basis of the cosine
value of their vectors −→u and −→w ; |−→u | = |−→w | = l.

sim(α1, α2) =
−→u · −→w

‖−→u ‖‖−→w ‖ =
∑l

i=1
−→ui

−→wi
√∑l

i=1
−→ui

2
√∑l

i=1
−→wi

2
(13)

For each group in a family, the node with the largest
summation of similarities with connected nodes is selected
as the representative node, which is formally defined as:

α′ = argmax
α∈GV (group)

∑

β∈S N(α)

sim(α, β), (14)

where GV (group) denotes the set of nodes in the group, and
SN(α) denotes the set of the neighbor nodes of α. In Fig. 7,
the representative malware samples include A3, B1, and C1,
which are marked with blue circles. The group that contains
only one sample, such as group C, exists. The sample C1 is
not similar to the other samples given that all the similarities
of C1 with the other nodes are lower than η. However,
the inspection of sample C1 could be more interesting. With
our approach, C1 is also regarded as one representative sample
in the family, such as A3 and B1.

Security analysts should focus on the representative
malware samples selected from each family instead of all
malware samples. Therefore, FalDroid can reduce the analyt-
ical workload and accelerate malware analysis.

IV. EVALUATION

We initially introduce the construction of our datasets, use
metrics to evaluate FalDroid, and then address the following
research questions:

RQ 1: Can fregraphs effectively represent the common
behaviors of malware samples within the same family?

RQ 2: Can FalDroid classify the new malware sample into
its family with high accuracy?

RQ 3: Can FalDroid effectively decrease the number of
malware samples to be analyzed?

RQ 4: Can FalDroid work efficiently and be scalable for a
large number of apps?

RQ 5: Is FalDroid resilient to polymorphic variants and
code obfuscation techniques?

A. Datasets and Metrics

We evaluate FalDroid using four datasets, including two
datasets that are constructed by ourselves (FalDroid-I and
FalDroid-II datasets) and two widely used benchmark datasets
that are provided from Drebin [31] and Android Malware
Genome Project [7]. TABLE II lists the descriptions of the
four datasets. More than 90% of malware samples are smaller
than 5 MB, and approximately 3% of malware samples are
larger than 10 MB. The largest sample size is 64 MB, and the
smallest sample size is only 5 KB.

After removing the families that contain only one sam-
ple, the dataset from Drebin [31] contains 5,513 samples
in 132 malware families, and the dataset provided from
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TABLE II

DESCRIPTIONS OF FOUR DIFFERENT DATASETS

TABLE III

PART OF THE FAMILY LABEL DICTIONARY

Fig. 8. The fregraph with the highest weight score.

Malware Genome Project [7] contains 1,247 samples
in 36 families.

To construct the FalDroid-I dataset, approximately
15,000 malware samples are first downloaded from
VirusShare [23] and uploaded to VirusTotal [32], which
is a system with 53 anti-virus scanners (e.g., AVL, McAfee,
and ESET-NOD32). The following two issues are found
from the anti-virus scanners: 1) the family labels given
by different anti-virus scanners are not always the same
(e.g., Plankton/Plangton/planktonc); and 2) the results of the
anti-virus scanners rarely reach a consensus. To address these
issues, we initially construct a family label dictionary based
on string-edit distance [33]. Part of the dictionary is listed
in TABLE III. Then, we label the malware with the family
name that is agreed by more than half of the anti-virus
scanners. Finally, 8,407 malware samples in 36 families are
labeled, and their information is listed in TABLE IV, where
Num is the number of malware samples in each family.

The samples in the FalDroid-II dataset are provided by
contagion [34] and MassVet [35] and labeled in the same man-
ner as those in the FalDroid-I dataset. Finally, 643 malware
samples in 43 families are labeled.

TABLE V lists the metrics used to evaluate FalDroid.
We develop FalDroid in 8,100 lines of Java code and 900 lines
of Python code. We conduct the experiments on a quad-core
3.20 GHz PC running Ubuntu 14.04(64 bit) with 16 GB RAM
and 1 TB hard disk.

B. Effectiveness of Representing Common Behavior

We manually inspect the fregraph with the highest weighted
score to evaluate whether the generated fregraphs can effec-
tively represent the common malicious behaviors shared by
malware samples within the same family. Fig. 8 shows the

TABLE IV

DESCRIPTIONS OF MALWARE FAMILIES

TABLE V

DESCRIPTIONS OF THE USED METRICS

generated fregraph with the highest weighted score of 9.821,
which is used by all 105 samples in the geinimi family. On the
basis of the semantic meanings of sensitive API calls in the
graph, we find that the fregraph is used to collect personal
information (e.g., phone number and IMEI). Analysis of the
packages that contain the fregraph reveals that the common
malicious code is hidden in different packages, as listed
in TABLE VI, in which the term Num denotes the number of
malware samples in the geinimi family that contain the corre-
sponding suspicious package. By representing their invocation
patterns as fregraphs, FalDroid can effectively identify the
common behaviors shared by different packages. The details
of all the generated fregraph-based features in the 36 families
are shared online at https://github.com/xjtu1025/FalDroid.

Answer to RQ 1: Fregraphs can effectively represent the
common behaviors shared by malware samples within the
same family..

C. Accuracy of Malware Familial Classification

1) Performance With Four Different Classifiers: We use
FalDroid-I dataset to evaluate the familial classification per-
formance of FalDroid equipped with four different classifiers,
namely, support vector machine (SVM; linear kernel) [36],
Decision Tree (C4.5) [37], k-nearest neighbor (k-NN;
k = 1) [38] and Random Forest (tree num = 100) [39].
The experiment is conducted using 10-fold cross-validation.
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TABLE VI

PACKAGES CONTAINING THE COMMON MALICIOUS
BEHAVIORS OF THE GEINIMI FAMILY

Fig. 9. Classification performance of FalDroid for four different classifiers
under different support thresholds θ .

Fig. 9 shows the classification accuracies of the four clas-
sifiers with different θ ranging from 0.1 to 0.9. We can draw
the following three conclusions from Fig. 9:

(i) All classifiers obtain an acceptable result (i.e., higher
than 86%).

(ii) SVM outperforms other classifiers. Its accuracy is 0.953
when θ = 0.1.

(iii) The performance of SVM decreases as θ increases,
particularly when θ exceeds 0.5. As shown in Fig. 10,
the number of fregraph-based features decreases with the
increase in θ . Specifically, no fregraphs are found for
some families (e.g., airpush and boqx) when θ > 0.5,
thereby resulting in low accuracy.

Moreover, Fig. 10 presents that the small number of
fregraph-based features results in the small run-time overhead
of feature construction for a new sample. The accuracy of
SVM decreases by 1.1% when θ = 0.5, whereas both the
number of features and the run-time overhead of feature
construction decrease by 82% when θ = 0.1. Thus, we select
SVM as our classifier and set θ = 0.5 in latter experiments.
Fig. 11 illustrates the increase in the number of fregraph-based
features when each malware family is included. On average,
21 new fregraph-based features are added per family.

TABLE VII shows the classification results when θ = 0.5.
Most families have TPR higher than 0.9. Specifically,

Fig. 10. Number of fregraph-based features and corresponding run-time
overhead of feature construction under different support thresholds θ .

Fig. 11. Number of fregraph-based features by adding families when θ = 0.5.

12 families achieve TPR equal to 1 with FPR equal to 0,
indicating that all of their samples are accurately classified and
no other samples are inaccurately classified into such families.
However, FalDroid obtains poor results for some families, such
as boqx and anserver. The boqx family contains only two
unique fregraph-based features. All the samples in the anserver
family are classified into the basebridge family because their
samples evolved from samples in the basebridge family [7].
In summary, FalDroid performs effectively for most families.

2) Classification Performance on Different Datasets: We
also evaluate FalDroid using four different datasets.
TABLE VIII shows the classification performance of
FalDroid for the four datasets when θ = 0.5.

FalDroid can successfully classify 95.3% of the samples
in the Drebin dataset [31] into their families. Its classification
accuracy is 0.972 for the Genome Project dataset [7]. Misclas-
sifications are attributed to two main reasons: First, few fre-
graphs are generated for some families, such as boxer in [31],
thus causing performance to deteriorate. Second, some fami-
lies, such as DroidKungFu2 and DroidKungFu3 in [7], exhibit
similar malicious behavior. Therefore, malware samples in
these families have similar fregraph-based feature vectors. The
classification accuracies of FalDroid for our constructed data-
bases are 0.942 and 0.919. In summary, FalDroid can achieve
acceptable classification performance for all four datasets.

3) Comparison With State-of-the-Art Approaches: We
compare FalDroid with seven state-of-the-art approaches,
including, Dendroid [40], Apposcopy [8], DroidSIFT [41],
MudFlow [42], TriFlow [43], DroidLegacy [10], and
Astroid [44]. These approaches are briefly described below:

• Dendroid automatically classifies malware and analyzes
families on the basis of code structures [40].

• Apposcopy extracts the data-flow and control-flow prop-
erties of an app to identify its family [8].
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TABLE VII

CLASSIFICATION PERFORMANCE FOR 36 FAMILIES WITH SVM WHEN θ = 0.5

TABLE VIII

CLASSIFICATION PERFORMANCE ON FOUR DATASETS

TABLE IX

CLASSIFICATION ACCURACIES OF FALDROID AND SEVEN

STATE-OF-THE-ART APPROACHES ON
GENOME PROJECT DATASET [7]

• DroidSIFT is a semantic-based approach that classifies
malware via API dependency graphs [41].

• MudFlow [42] and TriFlow [43] analyze malware sam-
ples on the basis of the source-and-sink method pairs
extracted by FlowDroid [45].

• DroidLegacy partitions the app code into loosely coupled
modules and identifies the malicious module of each
piggybacked malware family [10].

• Astroid automatically synthesizes a maximally suspicious
common subgraph of each malware family as a signature
to perform familial classification [44].

Given that most of these systems are not publicly available
and re-implementing the same systems with identical parame-
ters is difficult, we apply FalDroid to the same Genome Project
dataset [7], which has been used to evaluate these systems
in their works. TABLE IX lists the results of comparison.
FalDroid outperforms other seven approaches on the same
dataset for malware familial classification.

Among these approaches, DroidSIFT is the most related to
FalDroid. Two major differences are found between these two
approaches. First, DroidSIFT requires a set of graphs extra-
cted from benign apps to remove the common graphs extrac-
ted from malware, whereas FalDroid uses a clustering-based

Fig. 12. MSGs of zitmo with η = 0.7 and η = 0.8.

approach to mine fregraphs only from malware to identify
their commonalities. Ensuring the completeness of the
benign graph set is difficult for DroidSIFT. Moreover,
DroidSIFT calculates similarities among graphs using an
improved graph-edit distance (GED), whereas FalDroid
employs a novel weighted-sensitive-API-call-based approach,
which is more robust and effective than GED in detecting
homogeneous app behaviors and tolerating minor differences
in implementation (see Section IV-F for details).

4) Answer to RQ 2: FalDroid can classify malware
samples into their families with high accuracy and can outper-
form state-of-the-art approaches on a widely used benchmark
dataset [7].

D. Effectiveness of Representative Malware Sample Selection

To evaluate the capability of FalDroid in selecting repre-
sentative malware samples, we first analyze the MSGs of the
zi tmo family as an example. We then apply our approach to
the 36 malware families in our FalDroid-I dataset.

Fig. 12 illustrates the MSGs of zi tmo with different sim-
ilarity thresholds η = 0.7 and η = 0.8. In this figure, each
node denotes a malware sample, and purple nodes denote
selected representative samples. TABLE X lists the differences
in representative samples after manual analysis. Moreover,
these malware samples are in the same family, and their
receivers and malicious behaviors exhibit minor differences.
For example, samples in G A contain three receivers, whereas
samples in G B and GC contain only one receiver, thereby
resulting in three groups when η = 0.7. Moreover, Group G A

is divided into three subgroups, namely, G A1, G A2, and G A3,
when η = 0.8. The malicious behaviors of the samples in the
three subgroups also exhibit minor differences. For example,
samples in G A1 can read the phone state compared with the
samples in G A2 and G A3. Therefore, our approach provides an
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TABLE X

DIFFERENCES OF REPRESENTATIVE MALWARE SAMPLES IN zitmo FAMILY

TABLE XI

THE SELECTION OF REPRESENTATIVE MALWARE SAMPLES WITH DIFFERENT SIMILARITY THRESHOLD VALUES η

Fig. 13. Reduced percentages of samples to be analyzed in each family with different similarity threshold values η.

optional app similarity threshold for analysts when selecting
the representative malware samples in each family. A high
η indicates that high numbers of representative samples are
selected for analysis.

TABLE XI shows the number of groups generated in all the
36 families with different similarity threshold η. The group
number for each family increases or remains unchanged when
η increases because it is more difficult for two nodes to have
one edge. We can draw the following three conclusions.

(i) Group number is not related with family size. For exam-
ple, utchi (285 samples) has only one group, whereas
boqx (49 samples) has 41 groups when η = 0.8.

(ii) The group numbers of several malware families remain
unchanged with the increase in η (e.g., the group num-
bers of geinimi and utchi are always one). In other
words, the generated fregraph-based features indicate
that malware samples in such families are highly similar.

(iii) The malware families with relatively small change in the
group number exhibit better classification performance
than families with a considerable increase in group

numbers. For example, the TPR of geinimi, utchi, and
imlog can achieve 1, whereas that of airpush and boqx
is lower than 0.75. This phenomenon can be attributed
to the relatively small change in group number, which
indicates that samples in families, such as geinimi,
exhibit higher similarities than those in airpush.

One representative malware sample is selected for each
generated group. We use reduced percentage to denote the
percentage of malware samples in which its inspection can
be deferred because of the representative malware sam-
ple selected by FalDroid. reduced percentage = 1 −
groupNum( f )

f alNum( f ) , where groupNum( f ) denotes the number of
generated groups in family f . For example, analysts should
only inspect the most representative sample in this group rather
than all 105 samples because only one group is found in
the geinimi family. Consequently, we can effectively decrease
104 malware samples to be analyzed. Hence, the reduced
percentage of geinimi is 1 − 1

105 = 0.99.
Fig. 13 presents the reduced percentages of all the

36 families with different η values. It shows that the reduced
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Fig. 14. CDF of the ratio of size of SARG to its FCG.

Fig. 15. CDFs of the number of sensitive subgraphs and the number of
nodes in sensitive subgraphs.

percentage decreases with the increase in η. FalDroid can
effectively decrease the number of malware samples to be
analyzed by approximately 78% when η = 0.8 and by
approximately 91.5% when η = 0.5 on average.

Answer to RQ 3: FalDroid can effectively decrease malware
samples to be analyzed for each family.

E. Efficiency

1) Statistics of Generated Graphs: We use r to denote the
size ratio of SARG with its corresponding FCG given that
FalDroid initially generates SARG from FCG to exclude nodes
without paths to sensitive nodes. Fig. 14 presents the CDF of r
for all the samples in our datasets. More than 98% of r exists
in the range from 0.2 to 0.4, and the average value is 0.28.
Thus, the size of SARG is reduced by approximately 72%
compared with the that of the original FCG.

Then, we divide the SARG into a set of sensitive subgraphs
using community detection algorithms. Fig. 15 summarizes
the statistics of the sensitive subgraphs generated from FCG
and SARG. The left figure illustrates the CDFs of the number
of sensitive subgraphs. The CDF of the generated sensitive
subgraphs of SARG is close to that of FCG because the
construction of SARG retains all sensitive nodes. On aver-
age, 90 sensitive subgraphs are generated for each malware,
and more than 90% samples contain less than 200 sensitive
subgraphs. The right figure in Fig. 15 shows the CDFs for
the number of nodes in each sensitive subgraph. The sensitive
subgraphs generated from SARG contain fewer nodes than
those generated from FCG. On average, 10 nodes are found
in the sensitive subgraph generated from SARG. Furthermore,
approximately 750,000 sensitive subgraphs are found, and only
0.8% of these subgraphs have more than 50 nodes. However,
16 nodes are found in each sensitive subgraph directly gener-
ated from FCG. In addition, more than 4% subgraphs contain
more than 50 nodes.

The results demonstrate that the construction of SARG
can effectively reduce the complexity of graph analysis. This

Fig. 16. CDFs of run-time overhead for graph construction and community
detection.

observation is important to the scalability of FalDroid because
the run-time performance of graph matching depends on the
number of sensitive subgraphs and their nodes.

2) Run-Time Overhead: FalDroid comprises the following
main steps to analyze a new malware sample.

• Graph Construction: The APK file is disassembled and
a SARG is constructed.

• Community Detection: The SARG is divided into a set of
subgraphs using community detection algorithms.

• Feature Construction: The subgraphs of the new malware
sample are matched with fregraph-based features to gen-
erate a feature vector.

The run-time overheads of graph construction and commu-
nity detection are shown in Fig. 16. An average of 2.4 sec is
required to construct the graph model for a given APK file.
SARG construction requires considerably less time than APK
disassembly. In community detection, 1.5 sec is required to
divide the graph into a set of subgraphs, whereas 16 sec is
required when FCG is not simplified as an SARG. On average,
0.7 sec is required for the feature construction set to generate
the feature vector of a new malware sample when θ = 0.5.

The average run-time overhead of FalDroid is 4.6 sec, and
95% of the samples are processed within 10 sec. FalDroid
requires considerably less time than DroidSIFT [41] and
Apposcopy [8], which consume 175.8 and 275 sec, respec-
tively, to analyze an app due to their heavyweight static code
analysis. FalDroid consumes less time than DroidSIFT and
Apposcopy because of the following two reasons. First, SARG
is induced from the complex FCG by removing nodes without
close relationships with sensitive API call nodes. Thus, graph
size is reduced by 72%. The decrease in graph size effectively
shortens graph analysis. Second, we use a weighted-sensitive-
API-call-based graph matching approach, in which we focus
on the local structure of the sensitive API call nodes rather than
all the nodes in the subgraphs. Thus, our approach requires less
time to complete one pair-wise graph matching compared with
GED used in DroidSIFT.

3) Answer to RQ 4: The low run-time overhead allows
FalDroid to work efficiently and be scalable to a large number
of apps.

F. Resilience

1) Resilience to Polymorphic Variants: FalDroid performs
graph matching with the proposed weighted-sensitive-API-
call-based approach to compete against polymorphic variants.
In this process, we evaluate the effectiveness of our graph
matching approach and compare it with GED, which was
widely used by existing studies [41], [46]. The GED metric
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Fig. 17. Comparison between our weighted-sensitive-API-call-based graph
matching approach with GED on the similar set and the dissimilar set.

depends on the selection of edit operations and the cost
involved per operation (e.g., node insertion/deletion, edge
insertion/deletion and node relabeling). Specifically, we ignore
relabeling cost since the node label can be easily changed.
We manually construct two subgraph sets.

• The similar set, which consists of 50 sensitive subgraphs
generated from 50 different malware in the geinimi fam-
ily. These 50 sensitive subgraphs exhibit similar malicious
behaviors with minor differences.

• The dissimilar set, which consists of 50 sensitive sub-
graphs generated from one malware sample. Any two
subgraphs do not contain the same sensitive nodes, indi-
cating that they exhibit entirely different behaviors.

For the two subgraph sets, each subgraph is matched with
the others. Thus, 49*49 pair-wise graph matching similarities
are found. We compare the performance of our approach with
that of GED for the similar set (illustrated in the lefthand
side of Fig. 17) and the dissimilar set (illustrated in the
righthand side of Fig. 17). For the similar set, all similarities
computed by our approach are higher than 0.8, which is
selected as the similarity threshold for clustering subgraphs.
However, approximately 10% of similarities from GED are
lower than 0.8. For the dissimilar set, all similarities computed
by our approach are 0. GED similarities range from 0.1 to 1,
and approximately 3% of similarities are higher than 0.8.

Our approach requires less than 1 ms to complete one
pair-wise graph matching, whereas GED requires approx-
imately 7 ms. The low run-time overhead enables our
approach to be scalable for clustering thousands of subgraphs.
In summary, FalDroid can better reveal homogeneous behav-
iors and tolerate minor differences than GED.

2) Resilience to Code Obfuscation Techniques: We initially
evaluate the resilience of FalDroid to typical obfuscation tech-
niques (e.g., renaming user-defined functions [47]–[50]) by
using Proguard [51] to obfuscate ten apps from source codes.
The results show that their similarities on graph matching
are still 1. These typical obfuscation techniques do not affect
the performance of FalDroid because they do not change the
FCG structure.

Subsequently, we evaluate the resilience of FalDroid to
control flow obfuscation techniques, which will change the
FCG structure by inserting or deleting some useless methods.
For this purpose, we apply FalDroid to ten apps obfuscated
by the popular Android obfuscator, DashO [52], which can
adopt control flow obfuscation techniques. Results show that
the SARGs induced from FCGs will remain unchanged when
the inserted or deleted method nodes have no relation with the
sensitive API call nodes. By contrast, the subgraph matching

results and the constructed feature vectors will be slightly
affected when the inserted or deleted method nodes have
invocation relations with the sensitive API call nodes.

The nested calls are a typical control flow obfuscation
technique that inserts user-defined nodes when invoking sen-
sitive API calls. Recall that subgraph sg2 in Fig. 5 contains
one additional nested call compared with sg1. However, their
similarity is still 0.99, which nearly does not affect our
approach. However, when more nested call nodes are inserted,
the effect on the similarity calculation would be magnified.
To eliminate such cases, we can merge user-defined nodes
with their parent nodes when they only have one parent node.
Thus, we can reduce the effect of changing the shortest path
distances among sensitive API call nodes.

Being a static analysis approach, the performance of Fal-
Droid might be affected by advanced obfuscation techniques,
such as reflection and encryption. However, we can address
such limitations with the aid of existing open-source tools,
such as DroidRA [53] and PackerGrind [54], [55]. Existing
open-source tools address the above limitations through the
following approaches:

• Reflection: Reflection techniques [56] can hide some
edges in the call graph model by invoking functions
with their corresponding names as arguments. To be
resilient to reflection obfuscation techniques, we can use
DroidRA [53], which is an open-source tool, to perform
reflection analysis on our dataset through three steps.
First, we conduct DroidRA on our dataset and obtain the
analytical result. Second, we analyze the output result
of DroidRA for each app to identify methods that use
reflection techniques. Third, we add the missing edges
into the corresponding FCG, where caller nodes are
methods that use reflection techniques and callee nodes
are reflected methods. On average, we add fifteen more
edges into the FCG for each app, and only two edges
contain a sensitive API call node, which barely affects
the performance of our approach. Therefore, our approach
can be resilient to reflection obfuscation techniques with
the aid of DroidRA.

• Encryption Packer: Packers, such as APKProtect [57]
and Bangcle [58], can protect apps by using encryption
techniques to hide the actual Dex code. To address the
limitations of packer usage, we use PackerGrind [54],
[55], which is a novel adaptive unpacker system,
to recover the actual Dex files. Then, our approach can
be applied to the extracted Dex files.

3) Answer to RQ 5: FalDroid is resilient to polymorphic
variants and code obfuscation techniques through the aid of
existing tools.

V. DISCUSSION

A. External Validity

Considering the difficulty of collecting Android malware
samples with accurate labels, our dataset has only 8,407 mal-
ware samples from 36 families, whose labels are determined
in accordance with VirusTotal results. We recognize that the
results of VirusTotal may not be absolutely accurate. In future
work, we plan to collaborate with anti-virus companies to



FAN et al.: ANDROID MALWARE FAMILIAL CLASSIFICATION AND REPRESENTATIVE SAMPLE SELECTION 1903

collect additional malware samples from more families for
evaluation.

B. Unknown Malware Detection

It is worth noting that FalDroid aims at classifying malware
into their families instead of detecting malware. To evalu-
ate the capability of FalDroid to detect unknown malware,
we apply it to address a binary classification problem. That
is, given an app that is not contained in the training dataset,
FalDroid will classify it as a malware or a benign one.
We evaluate FalDroid for two types of unknown malware
detection.

First, we regard the variants of known malware samples
as type-I unknown malware samples. To evaluate the capabil-
ity of FalDroid to detect type-I unknown malware samples,
we construct a dataset that contains 643 malware samples
and 643 randomly selected benign samples. Then, we apply
FalDroid with 10-fold cross-validation to detect malware sam-
ples. The result shows that FalDroid can detect 97.8% type-I
unknown malware samples with a 1.1% false positive rate
(i.e., only seven benign samples are inaccurately detected as
malicious).

Second, we regard recent malware samples, which are
created several years after older known malware samples, as
type-II unknown malware samples. To evaluate the capability
of FalDroid to detect type-II unknown malware samples,
we first construct a training dataset and a testing dataset.
The training dataset consists of 8,407 old malware samples
and 8,407 randomly selected benign samples. The testing
dataset consists of 643 recent malware samples and 643 ran-
domly selected benign samples. Even though the malware
samples used for testing are known to be malicious, none of
them belongs to the malware families in the training dataset.
Therefore, the 643 malware samples are regarded as type-II
unknown malware with respect to the malware samples used
for training. The result shows that our approach can detect 75%
type-II unknown malware samples with a 2% false positive
rate. Our approach failed to report 25% type-II unknown
malware samples because of the concept drift problem [59].
Recent malware samples adopt some new attack measures,
such as encrypting important user files, that are different from
the attack measures adopted by old malware samples, such as
stealing personal information or sending premium messages
by using sensitive API calls.

We also compare the capability of FalDroid to detect
unknown malware with that of the most related approach
DroidSIFT. For type-I unknown malware detection, DroidSIFT
achieves a 97% true positive rate similar to that achieved
by our approach. However, its false positive rate is approx-
imately 5%, which is higher than that of our approach. The
main reason is that it constructs a benign subgraph set to
remove the common subgraphs extracted from malware. The
incompleteness of the benign graph set would introduce false
positives. For type-II unknown malware detection, Droid-
SIFT also achieves a result similar to that achieved by our
approach. The concept drift problem remains a challenge
for existing approaches with respect to unknown malware

detection. We will enhance the capability of FalDroid to
address the concept drift problem in future work.

C. Native Code

Malware can use native code [60] to access sensitive API
calls, and thus the static analysis techniques for Dex/Java
bytecode become unreliable. For the analysis of native code,
we will use Angr [61], an open-source binary analysis frame-
work, to construct the FCG of the native code. Then, we could
apply our approach to the extracted FCGs to generate fregraph-
based features and add them into the existing feature space.
We will explore this approach in future work.

VI. RELATED WORK

A. Familial Malware Classification

Previous studies used machine learning techniques to clas-
sify malware that targets PCs and mobile devices.

On PC platform, Kolter and Maloof [62] used n-grams of
byte codes as features to generate a classifier for malware
classification. Kinable and Kostakis [46] studied malware
classification based on call graph clustering by representing
malware samples as FCGs. Similarly, Hu et al. [63] devel-
oped a malware database management system that converts
each malware sample into its FCG representation and then
performs nearest neighbor search on the basis of this graph
representation.

Compared with traditional malware that targets PCs, mobile
malware are often produced by injecting malicious payloads
into legitimate apps [7], [35], and they usually invoke sensitive
API calls to perform malicious behaviors. Android is the
major target of mobile malware. Suarez-Tangil et al. [40]
proposed Dendroid, which automatically classifies malware
and analyzes families on the basis of code structures. However,
code structure could be easily obfuscated by bytecode-level
transformation [56]. Yang et al. [14] proposed DroidMiner,
which formalizes a two-level behavioral graph model and
extracts sensitive paths to denote malicious behavioral pat-
terns for malware classification. Sensitive paths may appear
in the legitimate part and malicious components, thereby
causing high false positive rates. The most related work to
our approach is DroidSIFT [41], which classifies Android
malware via dependency graphs. DroidSIFT relies on a set of
benign subgraphs to remove common subgraphs in malware.
However, ensuring the completeness of the benign subgraph
set is difficult.

B. Graph-Based Program Analysis

Many recent studies on Android detection have leveraged
graph analysis such as program dependence graph (PDG) [64],
[65], control dependence graph (CDG) [66], [67], function call
graph (FCG) [41], [68], and user interface (UI) graph [35],
[69], [70]. They are structural representations that are less sus-
ceptible to instruction-level obfuscations commonly employed
by malware authors to evade anti-virus scanners.

Crussell et al. [64] proposed DNADroid to detect cloned
apps by comparing PDGs among functions in candidate apps.
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Chen et al. [67] used the geometry characteristics (cen-
troid) of CDGs to measure similarity among app functions.
Gascon et al. [68] proposed a malware detection approach
based on the embedding of FCGs with an explicit feature
map. Chen et al. [35] proposed MassVet, which models the
UIs of apps as a directed graph wherein each node is a view
and each edge describes the navigation relations among them.
With the similar view structures in different apps, MassVet can
effectively identify repackaged apps. UI graphs are unsuitable
for familial malware classification because malware samples in
the same family usually have entirely different UIs. Although
PDG and CDG provide more information than FCG, their
extraction from apps and analysis are time consuming and
require considerable computational resources.

C. Differences From Previous Version

This work is an extension of a previous work that we
had presented as a conference paper [71]. We have added
a considerable amount of new material to the present work.
First, we implement and evaluate four widely used community
detection algorithms to divide SARG into a set of subgraphs.
Moreover, we analyze modularity Q values using infomap
algorithm [17].

Second, we redesign the calculation of the weighted score
of each fregraph-based feature. Specifically, we consider the
distribution probability and the weight of a fregraph-based fea-
ture to measure its significance for malware familial analysis.

Third, we equip FalDroid with the new capability to select
representative malware samples for each family by proposing
MSG to characterize the relationships among malware samples
in the same family. With this procedure, FalDroid allows
security analysts to focus on representative malware samples,
thereby decreasing the analytical workload and accelerating
malware analysis.

Fourth, we conduct several evaluations on FalDroid. We ini-
tially extend our FalDroid-I dataset with 1,842 new malware
samples and construct the FalDroid-II dataset with 643 recent
malware samples. Then, we manually inspect the fregraph
with the highest weighted score to determine whether the
fregraph can represent the common malicious behavior shared
by malware samples in the same family. We also evaluate
FalDroid using a dataset from Drebin [31]. Furthermore,
we apply FalDroid to the selection of representative samples
from 36 families and scrutinize the generated groups of the
zitmo family. We also evaluate the advantages of generating
SARG from its FCG in terms of graph size and run-time
overhead.

VII. CONCLUSION AND FUTURE WORK

We propose the use of fregraphs to depict the common
features shared by malware samples within the same fam-
ily. Moreover, we design FalDroid, a novel system that
can automatically classify Android malware samples with
high accuracy and effectively accelerate malware analysis by
recommending representative malware samples for scrutiny.
FalDroid is more effective and efficient than state-of-the-art

approaches. It provides considerable information for identify-
ing and inspecting malware and raises the level for malware
to evade analysis.

In future work, we will improve FalDroid by leveraging
the dynamic analysis approach, in which we can design an
enhanced graph model with data-flow information to involve
considerable semantic information and manage advanced
obfuscation techniques.
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